COVARIANT CLOSED STRING THEORY CANNOT BE CUBIC

被引:32
作者
SONODA, H
ZWIEBACH, B
机构
[1] MIT,CTR THEORET PHYS,NUCL SCI LAB,CAMBRIDGE,MA 02139
[2] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(90)90108-P
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that no symmetric three-closed-string vertex can give dual off-shell amplitudes for four-string scattering. This implies that covariant closed string field theory cannot be cubic. We conjecture the necessity of non-polynomiality. Our result implies the uniqueness of the cubic formulation of covariant open string field theory. © 1990.
引用
收藏
页码:185 / 221
页数:37
相关论文
共 24 条
[1]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[2]  
EARLE CJ, 1987, GEOMETRIC COMPLEX CO
[3]  
Ford L. R., 1951, AUTOMORPHIC FUNCTION
[4]  
FRENKEL IB, 1987, CAN MATH SOC
[5]   CONFORMAL GEOMETRY AND STRING FIELD-THEORY [J].
GIDDINGS, SB ;
MARTINEC, E .
NUCLEAR PHYSICS B, 1986, 278 (01) :91-120
[6]  
KRA I, HOROCYCLIC COORDINAT
[7]   NON-POLYNOMIAL CLOSED STRING FIELD-THEORY [J].
KUGO, T ;
KUNITOMO, H ;
SUEHIRO, K .
PHYSICS LETTERS B, 1989, 226 (1-2) :48-54
[8]   STRING FIELD-THEORY ON THE CONFORMAL PLANE .1. KINEMATICAL PRINCIPLES [J].
LECLAIR, A ;
PESKIN, ME ;
PREITSCHOPF, CR .
NUCLEAR PHYSICS B, 1989, 317 (02) :411-463
[9]   POLYNOMIAL EQUATIONS FOR RATIONAL CONFORMAL FIELD-THEORIES [J].
MOORE, G ;
SEIBERG, N .
PHYSICS LETTERS B, 1988, 212 (04) :451-460
[10]   CLASSICAL AND QUANTUM CONFORMAL FIELD-THEORY [J].
MOORE, G ;
SEIBERG, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (02) :177-254