FINELY HOLOMORPHIC-FUNCTIONS AND QUASI-ANALYTIC CLASSES

被引:1
作者
PYRIH, P
机构
[1] Department of Mathematical Analysis, Charles University, Prague 8, CZ-186 00
关键词
FINE TOPOLOGY; FINELY HOLOMORPHIC FUNCTION; QUASI-ANALYTIC CLASS;
D O I
10.1007/BF01468247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the set of functions in quasi-analytic classes and the set of finely holomorphic functions. We show that no one of these two sets is contained in the other. Let 2 denote the set of complex functions f: R --> C for which there exists a quasi-analytic class C{M(n)} containing f Let F denote the set of complex functions f: R --> C for which there exist a fine domain U containing the real line R and a function f finely holomorphic on U satisfying f(x) = f(x) for all x is-an-element-of R. The ''power'' of unique continuation is incomparable in these two cases (2\F is non-empty F\2 is non-empty).
引用
收藏
页码:273 / 281
页数:9
相关论文
共 4 条
[1]   FINELY HOLOMORPHIC-FUNCTIONS [J].
FUGLEDE, B .
ANNALES DE L INSTITUT FOURIER, 1981, 31 (04) :57-88
[2]  
FUGLEDE B, 1980, 18TH P SCAND C MATH, P22
[3]  
Mandelbrojt, 1935, SERIES FOURIER CLASS
[4]  
Rudin W., 1966, REAL COMPLEX ANAL