UNIFYING W-ALGEBRAS

被引:29
作者
BLUMENHAGEN, R [1 ]
EHOLZER, W [1 ]
HONECKER, A [1 ]
HORNFECK, K [1 ]
HUBEL, R [1 ]
机构
[1] INFN,I-10125 TURIN,ITALY
关键词
D O I
10.1016/0370-2693(94)90857-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that quantum Casimir W-algebras truncate at degenerate values of the central charge c to a smaller algebra if the rank is high enough: Choosing a suitable parametrization of the central charge in terms of the rank of the underlying simple Lie algebra, the field content does not change with the rank of the Casimir algebra any more. This leads to identifications between the Casimir algebras themselves but also gives rise to new, 'unifying' W-algebras. For example, the kth unitary minimal model of WA(n) has a unifying W-algebra of type W(2,3,..., k2 + 3k + 1). These unifying W-algebras are non-freely generated on the quantum level and belong to a recently discovered class of W-algebras with infinitely, non-freely generated classical counterparts. Some of the identifications are indicated by level-rank-duality leading to a coset realization of these unifying W-algebras. Other unifying W-algebras are new, including e.g. algebras of type WD(-n). We point out that all unifying quantum W-algebras are finitely, but non-freely generated.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 34 条
  • [1] LEVEL-RANK DUALITY IN NON-UNITARY COSET THEORIES
    ALTSCHULER, D
    BAUER, M
    SALEUR, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (16): : L789 - L793
  • [2] QUANTUM EQUIVALENCE OF COSET SPACE MODELS
    ALTSCHULER, D
    [J]. NUCLEAR PHYSICS B, 1989, 313 (02) : 293 - 307
  • [3] AWATA H, YITPK1054 PREPR
  • [4] AWATA H, SULDP19941 PREPR
  • [5] AWATA H, UT669 PREPR
  • [6] EXTENSIONS OF THE VIRASORO ALGEBRA CONSTRUCTED FROM KAC-MOODY ALGEBRAS USING HIGHER-ORDER CASIMIR INVARIANTS
    BAIS, FA
    BOUWKNEGT, P
    SURRIDGE, M
    SCHOUTENS, K
    [J]. NUCLEAR PHYSICS B, 1988, 304 (02) : 348 - 370
  • [7] COSET CONSTRUCTION FOR EXTENDED VIRASORO ALGEBRAS
    BAIS, FA
    BOUWKNEGT, P
    SURRIDGE, M
    SCHOUTENS, K
    [J]. NUCLEAR PHYSICS B, 1988, 304 (02) : 371 - 391
  • [8] THE STRUCTURE OF THE W-INFINITY ALGEBRA
    BAKAS, I
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (03) : 487 - 508
  • [9] CONFORMAL FIELD-THEORIES VIA HAMILTONIAN REDUCTION
    BERSHADSKY, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (01) : 71 - 82
  • [10] BLUMENHAGEN R, UNPUB COSET REALIZAT