Efficient solvers for nonlinear time-periodic eddy current problems

被引:35
作者
Bachinger, Florian [1 ]
Langer, Ulrich [2 ]
Schoeberl, Joachim [3 ]
机构
[1] Johannes Kepler Univ Linz, Spezialforsch Bereich SFB F013, Linz, Austria
[2] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[3] Johannes Kepler Univ Linz, Inst Computat Math, START Project Y192, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1007/s00791-006-0023-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work dealswith all aspects of the numerical simulation of nonlinear time-periodic eddy current problems, ranging from the description of the nonlinearity to an efficient solution procedure. Due to the periodicity of the solution, we suggest a truncated Fourier series expansion, i.e. a so-called multiharmonic ansatz, instead of a costly time-stepping scheme. Linearization is done by a Newton iteration, where the preconditioning of the linearized problems is a special issue: since the matrices are non-symmetric, we need a special adaptation of a multigrid preconditioner to our problem. Eddy current problems comprise another difficulty that complicates the numerical simulation, namely the formation of extremely thin boundary layers. This challenge is handled by means of adaptive mesh refinement.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 2002, P IGTE
[2]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[3]   Numerical analysis of nonlinear multiharmonic eddy current problems [J].
Bachinger, F ;
Langer, U ;
Schöberl, J .
NUMERISCHE MATHEMATIK, 2005, 100 (04) :593-616
[4]  
Bachinger F., 2003, THESIS
[5]   Residual based a posteriori error estimators for eddy current computation [J].
Beck, R ;
Hiptmair, R ;
Hoppe, RHW ;
Wohlmuth, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (01) :159-182
[6]   Strong coupled multi-harmonic finite element simulation package [J].
De Gersem, H ;
Sande, HV ;
Hameyer, K .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2001, 20 (02) :535-546
[7]   QMR - A QUASI-MINIMAL RESIDUAL METHOD FOR NON-HERMITIAN LINEAR-SYSTEMS [J].
FREUND, RW ;
NACHTIGAL, NM .
NUMERISCHE MATHEMATIK, 1991, 60 (03) :315-339
[8]   Harmonic-balance finite-element modeling of electromagnetic devices: A novel approach [J].
Gyselinck, J ;
Dular, P ;
Geuzaine, C ;
Legros, W .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) :521-524
[9]  
HACKBUSCH W, 2003, MULTIGRID METHODS AP
[10]   ANALYSIS OF A FULLY DISCRETE FINITE-ELEMENT METHOD FOR A NONLINEAR MAGNETIC-FIELD PROBLEM [J].
HEISE, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (03) :745-759