ARE PRIME-NUMBERS REGULARLY ORDERED

被引:7
作者
GAMBA, Z [1 ]
HERNANDO, J [1 ]
ROMANELLI, L [1 ]
机构
[1] CTR ARGENTINO ESTUDIOS RADIOCOMMUN & COMPATIBILIDAD ELECTROMAGNET,RA-1414 BUENOS AIRES,ARGENTINA
关键词
D O I
10.1016/0375-9601(90)90200-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The form of the prime number distribution function has withstood the efforts of all the mathematicians that have considered it. Here we address this problem with the tools of chaotic dynamics and find that, from a physical point of view, this distribution function is chaotic. © 1990.
引用
收藏
页码:106 / 108
页数:3
相关论文
共 12 条
[1]  
Berry M. V., 1986, SPRINGER LECT NOTES, P1
[3]   LIAPUNOV EXPONENTS FROM TIME-SERIES [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D ;
CILIBERTO, S .
PHYSICAL REVIEW A, 1986, 34 (06) :4971-4979
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   DISTRIBUTION OF PRIMES IN SHORT INTERVALS [J].
GALLAGHER, PX .
MATHEMATIKA, 1976, 23 (45) :4-9
[6]  
GARDNER M, 1964, SCI AM, V210, P120
[7]   CHAOS IN A NON-LINEAR DRIVEN OSCILLATOR WITH EXACT SOLUTION [J].
GONZALEZ, DL ;
PIRO, O .
PHYSICAL REVIEW LETTERS, 1983, 50 (12) :870-872
[8]   COMPUTING PI-(X) - THE MEISSEL-LEHMER METHOD [J].
LAGARIAS, JC ;
MILLER, VS ;
ODLYZKO, AM .
MATHEMATICS OF COMPUTATION, 1985, 44 (170) :537-560
[9]  
ODLYZKO AM, 1987, MATH COMPUT, V48, P273, DOI 10.1090/S0025-5718-1987-0866115-0
[10]   ARITHMETICAL PROPERTIES OF STRONGLY CHAOTIC MOTIONS [J].
PERCIVAL, I ;
VIVALDI, F .
PHYSICA D, 1987, 25 (1-3) :105-130