STRONGLY NON-LINEAR WAVES

被引:95
作者
SCHWARTZ, LW [1 ]
FENTON, JD [1 ]
机构
[1] UNIV NEW S WALES, SCH MATH, KENSINGTON, NSW 2033, AUSTRALIA
关键词
D O I
10.1146/annurev.fl.14.010182.000351
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This review deals with effectively exact solutions for nonlinear waves and the phenomena revealed by such solutions. The governing equation within the fluid is taken to be Laplace's equation, corresponding to irrotational flow of an incompressible fluid. Excluded are the physical effects of viscosity, density gradients, compressibility, and rotation. This model of the flow is the simplest, but one which is an excellent approximation in many cases of wave motion.
引用
收藏
页码:39 / 60
页数:22
相关论文
共 103 条
[1]  
BRENNEN C, 1970, 2ND P INT C NUM METH, P403
[2]  
Brennen C., 1970, 8 S NAV HYDR OFF NAV, P117
[3]   INTEGRAL EQUATION FOR UNSTEADY SURFACE WAVES AND A COMMENT ON BOUSSINESQ EQUATION [J].
BYATTSMITH, JG .
JOURNAL OF FLUID MECHANICS, 1971, 49 (OCT29) :625-+
[4]   SPEED AND PROFILE OF STEEP SOLITARY WAVES [J].
BYATTSMITH, JGB ;
LONGUETHIGGINS, MS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 350 (1661) :175-189
[5]  
CHABERTDHIERES G, 1960, HOUILLE BLANCHE, V15, P153
[6]  
Chan R. K.-C., 1970, Journal of Computational Physics, V6, P68, DOI 10.1016/0021-9991(70)90005-7
[7]   GENERALIZED ARBITRARY LAGRANGIAN-EULERIAN METHOD FOR INCOMPRESSIBLE FLOWS WITH SHARP INTERFACES [J].
CHAN, RKC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (03) :311-331
[8]   DIRECT NUMERICAL CALCULATION OF WAVE PROPERTIES [J].
CHAPPELEAR, J .
JOURNAL OF GEOPHYSICAL RESEARCH, 1961, 66 (02) :501-+
[9]   SHALLOW-WATER WAVES [J].
CHAPPELEAR, JE .
JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (12) :4693-+
[10]  
CHEN B, 1980, STUD APPL MATH, V62, P1