DOMINATION NUMBERS ON THE COMPLEMENT OF THE BOOLEAN FUNCTION GRAPH OF A GRAPH

被引:0
作者
Jankairaman, T. N. [1 ]
Muthammai, S. [2 ]
Bhanumathi, M. [2 ]
机构
[1] Natl Inst Technol, Tiruchirappalli 620015, Tamil Nadu, India
[2] Govt Arts Coll Women, Pudukkottai 622001, India
来源
MATHEMATICA BOHEMICA | 2005年 / 130卷 / 03期
关键词
domination number; eccentricity; radius; diameter; neighborhood; perfect matching; Boolean function graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any graph G, let V(G) and E(G) denote the vertex set and the edge set of G respectively. The Boolean function graph B(G, L(G), NINC) of G is a graph with vertex set V (G) boolean OR E(G) and two vertices in B(G, L(G), NINC) are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted by B-1(G). In this paper, we determine domination number, independent, connected, total, point-set, restrained, split and non-split domination numbers in the complement (B-1) over bar (G) of B-1(G) and obtain bounds for the above numbers.
引用
收藏
页码:247 / 263
页数:17
相关论文
共 16 条
[1]  
Akiyama J., 1975, TRU MATH, V11, P35
[2]   DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF A GRAPH [J].
ALLAN, RB ;
LASKAR, R .
DISCRETE MATHEMATICS, 1978, 23 (02) :73-76
[3]  
BEHZAD M, 1967, PROC CAMB PHILOS S-M, V63, P679
[4]  
Chikkodimath S. B., 1973, SEMITOTAL GRAPHS 2, P5
[5]  
Cockayne E.J., 1993, J COMB INF SYST SCI, V18, P136
[6]   TOTAL DOMINATION IN GRAPHS [J].
COCKAYNE, EJ ;
DAWES, RM ;
HEDETNIEMI, ST .
NETWORKS, 1980, 10 (03) :211-219
[7]   Restrained domination in graphs [J].
Domke, GS ;
Hattingh, JH ;
Hedetniemi, ST ;
Laskar, RC ;
Markus, LR .
DISCRETE MATHEMATICS, 1999, 203 (1-3) :61-69
[8]   TRAVERSABILITY AND CONNECTIVITY OF MIDDLE GRAPH OF A GRAPH [J].
HAMADA, T ;
YOSHIMURA, I .
DISCRETE MATHEMATICS, 1976, 14 (03) :247-255
[9]  
Harary F., 1969, GRAPH THEORY, DOI DOI 10.21236/AD0705364
[10]  
Janakiraman TN, 2005, MATH BOHEM, V130, P113