UNIVERSAL CYCLES FOR COMBINATORIAL STRUCTURES

被引:110
作者
CHUNG, F
DIACONIS, P
GRAHAM, R
机构
[1] HARVARD UNIV,CAMBRIDGE,MA 02139
[2] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
D O I
10.1016/0012-365X(92)90699-G
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore generalizations of de Bruijn cycles for a variety of families of combinatorial structures, including permutations, partitions and subsets of a finite set.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 22 条
[1]   UNIVERSAL TILINGS AND UNIVERSAL (0,1)-MATRICES [J].
CLAPHAM, CRJ .
DISCRETE MATHEMATICS, 1986, 58 (01) :87-92
[2]  
COOK JC, 1988, DISCRETE MATH, V70, P209
[3]  
De Bruijn N. G., 1946, P KONINKLIJKE NEDERL, V49, P758
[4]  
DEHNHARDT K, 1988, DISCRETE MATH, V73, P65
[5]  
FAN CT, 1985, ARS COMBINATORIA, V19A, P205
[6]   A SURVEY OF FULL LENGTH NON-LINEAR SHIFT REGISTER CYCLE ALGORITHMS [J].
FREDRICKSEN, H .
SIAM REVIEW, 1982, 24 (02) :195-221
[7]   ON EXISTENCE OF PERFECT MAPS [J].
GORDON, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1966, 12 (04) :486-+
[8]  
Graham R. L., 1989, CONCRETE MATH
[9]  
Graham R. L., 1980, RAMSEY THEORY
[10]  
HURLBERT G, 1990, THESIS RUTGERS U