Quantum Logic in Dagger Kernel Categories

被引:7
作者
Heunen, Chris [1 ]
Jacobs, Bart [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Comp & Informat Sci iCIS, Nijmegen, Netherlands
关键词
Dagger kernel category; quantum logic; categorical logic;
D O I
10.1016/j.entcs.2011.01.024
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/ logical properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the Sasaki hook and and-then connectives are obtained, as adjoints, via the existential-pullback adjunction between fibres.
引用
收藏
页码:79 / 103
页数:25
相关论文
共 25 条
[1]   A categorical semantics of quantum protocols [J].
Abramsky, S ;
Coecke, B .
19TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2004, :415-425
[2]   ALGEBRAICALLY COMPACT FUNCTORS [J].
BARR, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 82 (03) :211-231
[3]  
Barr M., 1985, TOPOSES TRIPLES THEO
[4]  
BORCEUX F, 1994, ENCY MATH, V51
[5]  
Borceux F., 1994, ENCY MATH, V52
[6]  
Borceux F, 1994, ENCY MATH, V50
[7]  
Cassinelli G., 2004, THEORY SYMMETRY ACTI, DOI [10.1007/b99455, DOI 10.1007/B99455]
[8]  
COECKE B, 2006, MATH QUANTUM COMPUTI
[9]  
Freyd P., 1964, ABELIAN CATEGORIES I
[10]   A categorical model for the geometry of interaction [J].
Haghverdi, E ;
Scott, P .
THEORETICAL COMPUTER SCIENCE, 2006, 350 (2-3) :252-274