LINEAR-FORMS IN LUCAS-NUMBERS

被引:0
作者
TOPFER, T [1 ]
机构
[1] UNIV COLOGNE,INST MATH,W-5000 COLOGNE 41,GERMANY
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1993年 / 4卷 / 03期
关键词
D O I
10.1016/0019-3577(93)90008-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If (u(m))m is-an-element-of N0 denotes a Lucas sequence, i.e. a binary integer recurrence sequence with initial values u0 = 0 and u1 = 1, then the equation ku(m) = lu(n) with k,l is-an-element-of Z \ {0} and max{m,n} greater-than-or-equal-to 5 can be valid only for finitely many Lucas sequences with coprime roots and finitely many indices m,n is-an-element-of N, which can - both - be effectively bounded. This yields lower bounds for \ku(m) - lu(n)\. In the same way the equation u(n) = l can be considered, and this gives a partial answer to a conjecture of Beukers concerning multiplicities of binary recurrences. The proofs depend on estimates for linear forms in logarithms and on bounds for the solutions of equations in binary forms.
引用
收藏
页码:363 / 373
页数:11
相关论文
共 20 条
[11]  
KUBOTA KK, 1977, ACTA ARITH, V33, P11
[12]  
Kubota KK., 1977, ACTA ARITH, V33, P99, DOI 441844
[13]   GROWTH OF RECURRENCE SEQUENCES [J].
LOXTON, JH ;
VANDERPOORTEN, AJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 81 (MAY) :369-376
[14]   SUBSEQUENCES OF BINARY RECURSIVE SEQUENCES [J].
PARNAMI, JC ;
SHOREY, TN .
ACTA ARITHMETICA, 1982, 40 (02) :193-196
[15]  
PHILIPPON P, 1980, NEW ADV TRANSCENDENC, P280
[16]  
Shorey T.N., 1986, EXPONENTIAL DIOPHANT
[17]   ON THE DIOPHANTINE EQUATION AX2T+BXTY+CY2=D AND PURE POWERS IN RECURRENCE SEQUENCES [J].
SHOREY, TN ;
STEWART, CL .
MATHEMATICA SCANDINAVICA, 1983, 52 (01) :24-36
[18]   LINEAR-FORMS IN MEMBERS OF A BINARY RECURSIVE SEQUENCE [J].
SHOREY, TN .
ACTA ARITHMETICA, 1984, 43 (04) :317-331
[19]  
Stewart C.L., 1976, THESIS U CAMBRIDGE
[20]  
TIJDEMAN R, 1980, SEM THEORIE NOMBRES