A robust uniform B-spline collocation method for solving the generalized PHI-four equation

被引:0
作者
Zahra, W. K. [1 ]
Ouf, W. A. [2 ]
El-Azab, M. S. [2 ]
机构
[1] Tanta Univ, Fac Engn, Dept Phys & Engn Math, Tanta 31521, Egypt
[2] Al Mansoura Univ, Fac Engn, Dept Math, Mansoura, Egypt
来源
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL | 2016年 / 11卷 / 01期
关键词
PHI-four equation; cubic B-spline; Collocation method; Von-Neumann stability;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a numerical solution based on cubic B-spline collocation method. By applying Von-Neumann stability analysis, the proposed technique is shown to be unconditionally stable. The accuracy of the presented method is demonstrated by a test problem. The numerical results are found to be in good agreement with the exact solution.
引用
收藏
页码:364 / 376
页数:13
相关论文
共 14 条
[1]  
Alofi AS., 2013, WORLD APPL SCI J, V21, P62, DOI DOI 10.5829/idosi.wasj.2013.21.mae.99920
[2]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[3]  
Bhrawy A.H., 2013, BOUND VALUE PROBL, V87, P1
[4]  
Bulut H, 2012, APPL APPL MATH, V7, P619
[5]  
Cao J, 2014, B MALAYS MATH SCI SO, V37, P1209
[6]  
Ehsani F., 2013, TECHNICAL J ENG APPL, V3, P1378
[7]  
Munguia M, 2015, APPL APPL MATH, V10, P750
[8]  
Najafi M., 2012, INT J APPL MATH RES, V1, P659
[9]  
Neyramea A., 2013, J KING SAUD U, V22, P275
[10]   Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations [J].
Sassaman, Ryan ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3239-3249