ON CONVERGENCE OF NUCLEAR AND CORRELATION OPERATORS IN HILBERT-SPACE

被引:0
作者
KUBRUSLY, CS
机构
[1] NATL LAB SCI COMP,DEPT RES & DEV,BR-22290 RIO DE JANEIRO,BRAZIL
[2] CATHOLIC UNIV RIO DE JANEIRO,DEPT ELECT ENGN,BR-22453 RIO DE JANEIRO,BRAZIL
来源
MATEMATICA APLICADA E COMPUTACIONAL | 1986年 / 5卷 / 03期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:265 / 282
页数:18
相关论文
共 17 条
[1]   STOCHASTIC OPTIMIZATION THEORY IN HILBERT SPACES .1. [J].
BALAKRISHNAN, AV .
APPLIED MATHEMATICS AND OPTIMIZATION, 1974, 1 (02) :97-120
[2]  
BALAKRISHNAN AV, 1975, LECTURE NOTES COMP S, V27
[3]  
BALAKRISHNAN AV, 1981, APPLIED FUNCTIONAL A
[4]   INFINITE-DIMENSIONAL FILTERING [J].
CURTAIN, RF .
SIAM JOURNAL ON CONTROL, 1975, 13 (01) :89-104
[5]  
CURTAIN RF, 1978, LECTURE NOTES CONTRO, V8
[6]   Sufficient Conditions for Infinite-Rank Hankel Operators to be Nuclear [J].
Curtain, Ruth F. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1985, 2 (02) :171-182
[7]  
Dunford N., 1958, LINEAR OPERATORS 1
[8]  
Dunford N., 1963, LINEAR OPERATORS PAR
[9]  
Gohberg I. C., 1969, TRANSL MATH MONOGR, V18
[10]   STABILITY OF SEMI-LINEAR STOCHASTIC-EVOLUTION EQUATIONS [J].
ICHIKAWA, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 90 (01) :12-44