Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices

被引:0
|
作者
Gratzer, G. [1 ]
Knapp, E. [2 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB MB R3T, Canada
[2] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2010年 / 76卷 / 1-2期
基金
加拿大自然科学与工程研究理事会;
关键词
semimodular lattice; planar; congruence; rectangular;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a finite distributive lattice with n join-irreducible elements. In Part III, we proved that D can be represented as the congruence lattice of a special type of planar semimodular lattices of O(n(3)) elements, we called rectangular. In this paper, we show that this result is best possible. Let D be a finite distributive lattice whose order of join-irreducible elements is a balanced bipartite order on n elements. Then any rectangular lattice L whose congruence lattice is isomorphic to D has at least kn3 elements, for some constant k > 0.
引用
收藏
页码:3 / 26
页数:24
相关论文
共 38 条
  • [21] Lamps in slim rectangular planar semimodular lattices
    Czedli, Gabor
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (3-4): : 381 - 413
  • [22] REDUCING THE LENGTHS OF SLIM PLANAR SEMIMODULAR LATTICES WITHOUT CHANGING THEIR CONGRUENCE LATTICES
    Czedli, Gabor
    MATHEMATICA BOHEMICA, 2024, 149 (04): : 503 - 532
  • [23] Congruence structure of planar semimodular lattices: the General Swing Lemma
    Gábor Czédli
    George Grätzer
    Harry Lakser
    Algebra universalis, 2018, 79
  • [24] Notes on planar semimodular lattices I. Construction
    Gratzer, George
    Knapp, Edward
    ACTA SCIENTIARUM MATHEMATICARUM, 2007, 73 (3-4): : 445 - 462
  • [25] Structure of Quasivariety Lattices. IV. Nonstandard Quasivarieties
    Kravchenko, A., V
    Nurakunov, A. M.
    Schwidefsky, M., V
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (05) : 850 - 858
  • [26] Notes on planar semimodular lattices II. Congruences
    Graetzer, G.
    Knapp, E.
    ACTA SCIENTIARUM MATHEMATICARUM, 2008, 74 (1-2): : 37 - 47
  • [27] Structure of Quasivariety Lattices. IV. Nonstandard Quasivarieties
    A. V. Kravchenko
    A. M. Nurakunov
    M. V. Schwidefsky
    Siberian Mathematical Journal, 2021, 62 : 850 - 858
  • [28] D Congruence structure of planar semimodular lattices: the General Swing Lemma
    Czedli, Gabor
    Gratzer, George
    Lakser, Harry
    ALGEBRA UNIVERSALIS, 2018, 79 (02)
  • [29] A short proof of the congruence representation theorem of rectangular lattices
    Graetzer, G.
    Schmidt, E. T.
    ALGEBRA UNIVERSALIS, 2014, 71 (01) : 65 - 68
  • [30] A short proof of the congruence representation theorem of rectangular lattices
    G. Grätzer
    E. T. Schmidt
    Algebra universalis, 2014, 71 : 65 - 68