Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices

被引:0
|
作者
Gratzer, G. [1 ]
Knapp, E. [2 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB MB R3T, Canada
[2] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2010年 / 76卷 / 1-2期
基金
加拿大自然科学与工程研究理事会;
关键词
semimodular lattice; planar; congruence; rectangular;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a finite distributive lattice with n join-irreducible elements. In Part III, we proved that D can be represented as the congruence lattice of a special type of planar semimodular lattices of O(n(3)) elements, we called rectangular. In this paper, we show that this result is best possible. Let D be a finite distributive lattice whose order of join-irreducible elements is a balanced bipartite order on n elements. Then any rectangular lattice L whose congruence lattice is isomorphic to D has at least kn3 elements, for some constant k > 0.
引用
收藏
页码:3 / 26
页数:24
相关论文
共 38 条