HIGHER-ORDER NONLINEAR DISPERSIVE EQUATIONS

被引:93
作者
KENIG, CE
PONCE, G
VEGA, L
机构
[1] UNIV AUTONOMA MADRID,FAC CIENCIAS,E-28049 MADRID,SPAIN
[2] UNIV CALIF SANTA BARBARA,DEPT MATH,SANTA BARBARA,CA 93106
关键词
HIGHER ORDER MODELS; SMOOTHING EFFECTS; GAUGE TRANSFORMATION;
D O I
10.2307/2160855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear dispersive equations of the form partial derivative(t)u + partial derivative(x)2j+1u + P(u, partial derivative(x)u, . . . , partial derivative(x)(2j)u) = 0, t is-an-element-of R, j is-an-element-of Z+, where P(-) is a polynomial having no constant or linear terms. It is shown that the associated initial value problem is locally well posed in weighted Sobolev spaces. The method of proof combines several sharp estimates for solutions of the associated linear problem and a change of dependent variable which allows us to consider data of arbitrary size.
引用
收藏
页码:157 / 166
页数:10
相关论文
共 21 条
[1]  
Constantin P., 1988, J AM MATH SOC, V1, P413, DOI [10.2307/1990923, DOI 10.2307/1990923]
[2]  
CRAIG W, 1992, ANN I H POINCARE-AN, V9, P147
[3]  
FOKAS AS, 1987, TOPICS SOLITON THEOR, P46
[4]   ON THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
HAYASHI, N ;
OZAWA, T .
PHYSICA D, 1992, 55 (1-2) :14-36
[5]  
HAYASHI N, IN PRESS DIFFERENTIA
[6]  
Kato T., 1983, ADV MATH SUPP STUD, V8, P93
[7]   SMALL SOLUTIONS TO NONLINEAR SCHRODINGER-EQUATIONS [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (03) :255-288
[8]   OSCILLATORY INTEGRALS AND REGULARITY OF DISPERSIVE EQUATIONS [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (01) :33-69
[9]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620
[10]  
KENIG CE, IN PRESS P LYON WORK