SOME INVERSE EIGENPROBLEMS FOR JACOBI AND ARROW MATRICES

被引:9
作者
BORGES, CF [1 ]
FREZZA, R [1 ]
GRAGG, WB [1 ]
机构
[1] UNIV PADUA,DEI,I-35131 PADUA,ITALY
关键词
JACOBI MATRIX; ARROW MATRIX; INVERSE PROBLEM;
D O I
10.1002/nla.1680020302
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of reconstructing Jacobi matrices and real symmetric arrow matrices from two eigenpairs. Algorithms for solving these inverse problems are presented. We show that there are reasonable conditions under which this reconstruction is always possible. Moreover, it is seen that in certain cases reconstruction can proceed with little or no cancellation. The algorithm is particularly elegant for the tridiagonal matrix associated with a bidiagonal singular value decomposition.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 13 条
[1]   ERROR ANALYSIS OF UPDATE METHODS FOR THE SYMMETRICAL EIGENVALUE PROBLEM [J].
BARLOW, JL .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (02) :598-618
[2]  
BOLEY D, 1984, MATH COMPUT, V42, P143, DOI 10.1090/S0025-5718-1984-0725989-1
[3]  
BORGES C, 1993, COMPUTATION CONTROL, V3, P63
[4]  
BORGES CF, 1993, NUMERICAL LINEAR ALGEBRA, P11
[5]  
CUPPEN JJM, 1981, NUMER MATH, V36, P77
[6]   ON COMPUTING ACCURATE SINGULAR-VALUES AND EIGENVALUES OF MATRICES WITH ACYCLIC GRAPHS [J].
DEMMEL, JW ;
GRAGG, W .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 185 :203-217
[7]  
Dongarra J., 1987, SIAM J SCI STAT COMP, V8, P139
[8]  
GOLUB G. H., 1965, SIAM J NUMER ANAL, V2, P205, DOI [10.1137/0702016, DOI 10.1137/0702016]
[9]  
GRAGG WB, 1992, MODELING SIMULATION, P49
[10]  
GU M, 1994, SIAM J MATRIX ANAL A, V15, P1226