RATIONAL CYCLES OF QUADRATIC POLYNOMIALS

被引:0
作者
Piipponen, Samuli [1 ]
Erkama, Timo [1 ]
机构
[1] Univ Eastern Finland, Dept Math & Phys, POB 111, Joensuu 80101, Finland
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2014年 / 33卷 / 02期
关键词
polynomial iteration; combinatorics; algebraic geometry; rational cycle; configuration matrix; abc-conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new combinatorial proof of the fact that the field Q(i) does not contain 4-cycles of quadratic polynomials is presented. We show that the primes dividing the common denominator of points of such a cycle appear in different configurations and that the cycle could be parametrized by seven relatively prime Gaussian integers satisfying a system of twelve algebraic equations. This system can then be analyzed by methods of computational algebraic geometry. The same idea leads to a new parametrization of rational 3-cycles and an associated reformulation of the abc-conjecture. Moreover, the method of the proof generalizes for general n-cycles as well, and as such the method provides a platform for the proof for non existence for nontrivial rational n-cycles.
引用
收藏
页码:113 / 132
页数:20
相关论文
共 50 条
[31]   Specht polynomials and modules over the Weyl algebra [J].
Nonkane, Ibrahim .
AFRIKA MATEMATIKA, 2019, 30 (1-2) :279-290
[32]   On the concavity properties of certain arithmetic sequences and polynomials [J].
Zhu, Bao-Xuan .
MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (03)
[33]   Specht polynomials and modules over the Weyl algebra [J].
Ibrahim Nonkané .
Afrika Matematika, 2019, 30 :279-290
[34]   On linearization coefficients of q-Laguerre polynomials [J].
Hwang, Byung-Hak ;
Kim, Jang Soo ;
Oh, Jaeseong ;
Yu, Sang-Hoon .
ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02) :1-21
[35]   Counting squarefree values of polynomials with error term [J].
Murty, M. Ram ;
Pasten, Hector .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (07) :1743-1760
[36]   Generalized polynomials and new families of generating functions [J].
Dattoli G. ;
Lorenzutta S. ;
Cesarano C. .
Annali dell’Università di Ferrara, 2001, 47 (1) :57-61
[37]   The Arithmetic Tutte Polynomials of the Classical Root Systems [J].
Ardila, Federico ;
Castillo, Federico ;
Henley, Michael .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) :3830-3877
[38]   Motivic Milnor fibers of a rational function [J].
Michel Raibaut .
Revista Matemática Complutense, 2013, 26 :705-734
[39]   Invariant rational forms for correspondences of curves [J].
Saha, Arnab .
JOURNAL OF NUMBER THEORY, 2014, 143 :170-184
[40]   Motivic Milnor fibers of a rational function [J].
Raibaut, Michel .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :705-734