RATIONAL CYCLES OF QUADRATIC POLYNOMIALS

被引:0
作者
Piipponen, Samuli [1 ]
Erkama, Timo [1 ]
机构
[1] Univ Eastern Finland, Dept Math & Phys, POB 111, Joensuu 80101, Finland
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2014年 / 33卷 / 02期
关键词
polynomial iteration; combinatorics; algebraic geometry; rational cycle; configuration matrix; abc-conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new combinatorial proof of the fact that the field Q(i) does not contain 4-cycles of quadratic polynomials is presented. We show that the primes dividing the common denominator of points of such a cycle appear in different configurations and that the cycle could be parametrized by seven relatively prime Gaussian integers satisfying a system of twelve algebraic equations. This system can then be analyzed by methods of computational algebraic geometry. The same idea leads to a new parametrization of rational 3-cycles and an associated reformulation of the abc-conjecture. Moreover, the method of the proof generalizes for general n-cycles as well, and as such the method provides a platform for the proof for non existence for nontrivial rational n-cycles.
引用
收藏
页码:113 / 132
页数:20
相关论文
共 50 条
  • [21] The Boolean quadratic forms and tangent law
    Ejsmont, Wiktor
    Hecka, Patrycja
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2024, 13 (01)
  • [22] Logarithmic double ramification cycles
    Holmes, D.
    Molcho, S.
    Pandharipande, R.
    Pixton, A.
    Schmitt, J.
    INVENTIONES MATHEMATICAE, 2025, 240 (01) : 35 - 121
  • [23] TWISTED QUADRATIC FOLDINGS OF ROOT SYSTEMS
    Lanini, M.
    Zainoulline, K.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2022, 33 (01) : 65 - 84
  • [24] Riordan arrays, Lukasiewicz paths and Narayana polynomials
    Yang, Lin
    Yang, Sheng-Liang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 622 : 1 - 18
  • [25] Multivariate Orthogonal Laurent Polynomials and Integrable Systems
    Ariznabarreta, Gerardo
    Manas, Manuel
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (01) : 79 - 185
  • [26] An equivalent formulation of chromatic quasi-polynomials
    Tan Nhat Tran
    DISCRETE MATHEMATICS, 2020, 343 (10)
  • [27] Specht polynomials and modules over the Weyl algebra
    Nonkane, Ibrahim
    AFRIKA MATEMATIKA, 2019, 30 (1-2) : 279 - 290
  • [28] Positivity results for Stanley's character polynomials
    Rattan, A.
    JOURNAL OF ALGEBRA, 2007, 308 (01) : 26 - 43
  • [30] Generalized polynomials and new families of generating functions
    Dattoli G.
    Lorenzutta S.
    Cesarano C.
    Annali dell’Università di Ferrara, 2001, 47 (1): : 57 - 61