RATIONAL CYCLES OF QUADRATIC POLYNOMIALS

被引:0
作者
Piipponen, Samuli [1 ]
Erkama, Timo [1 ]
机构
[1] Univ Eastern Finland, Dept Math & Phys, POB 111, Joensuu 80101, Finland
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2014年 / 33卷 / 02期
关键词
polynomial iteration; combinatorics; algebraic geometry; rational cycle; configuration matrix; abc-conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new combinatorial proof of the fact that the field Q(i) does not contain 4-cycles of quadratic polynomials is presented. We show that the primes dividing the common denominator of points of such a cycle appear in different configurations and that the cycle could be parametrized by seven relatively prime Gaussian integers satisfying a system of twelve algebraic equations. This system can then be analyzed by methods of computational algebraic geometry. The same idea leads to a new parametrization of rational 3-cycles and an associated reformulation of the abc-conjecture. Moreover, the method of the proof generalizes for general n-cycles as well, and as such the method provides a platform for the proof for non existence for nontrivial rational n-cycles.
引用
收藏
页码:113 / 132
页数:20
相关论文
共 50 条
[21]   The Boolean quadratic forms and tangent law [J].
Ejsmont, Wiktor ;
Hecka, Patrycja .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2024, 13 (01)
[22]   TWISTED QUADRATIC FOLDINGS OF ROOT SYSTEMS [J].
Lanini, M. ;
Zainoulline, K. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2022, 33 (01) :65-84
[23]   Logarithmic double ramification cycles [J].
Holmes, D. ;
Molcho, S. ;
Pandharipande, R. ;
Pixton, A. ;
Schmitt, J. .
INVENTIONES MATHEMATICAE, 2025, 240 (01) :35-121
[24]   Riordan arrays, Lukasiewicz paths and Narayana polynomials [J].
Yang, Lin ;
Yang, Sheng-Liang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 622 :1-18
[25]   Multivariate Orthogonal Laurent Polynomials and Integrable Systems [J].
Ariznabarreta, Gerardo ;
Manas, Manuel .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (01) :79-185
[26]   Products, Polynomials and Differential Equations in the Stream Calculus [J].
Boreale, Michele ;
Collodi, Luisa ;
Gorla, Daniele .
ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2024, 25 (01)
[27]   Bernstein-Sato polynomials of hyperplane arrangements [J].
Saito, Morihiko .
SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (04) :2017-2057
[28]   Positivity results for Stanley's character polynomials [J].
Rattan, A. .
JOURNAL OF ALGEBRA, 2007, 308 (01) :26-43
[29]   Real factorization of multivariate polynomials with integer coefficients [J].
Galligo A. .
Journal of Mathematical Sciences, 2002, 108 (6) :934-941
[30]   An equivalent formulation of chromatic quasi-polynomials [J].
Tan Nhat Tran .
DISCRETE MATHEMATICS, 2020, 343 (10)