AN UPPER BOUND ON THE TOTAL OUTER-INDEPENDENT DOMINATION NUMBER OF A TREE

被引:3
|
作者
Krzywkowski, Malvin [1 ]
机构
[1] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Ul Narutowicza 11-12, PL-80233 Gdansk, Poland
关键词
total outer-independent domination; total domination; tree;
D O I
10.7494/OpMath.2012.32.1.153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A total outer-independent dominating set of a graph G = (V (G); E (G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \ D is independent. The total outer-independent domination number of a graph G, denoted by rt(oi) (G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have rt(oi) (T) <= (2 n + s - l)/3, and we characterize the trees attaining this upper bound.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 50 条
  • [41] Some conjectures of Graffiti.pc on the total domination number of a tree
    Jiang, Hongxing
    UTILITAS MATHEMATICA, 2016, 99 : 33 - 42
  • [42] THE TOTAL CO-INDEPENDENT DOMINATION NUMBER OF SOME GRAPH OPERATIONS
    Martinez, Abel Cabrera
    Garcia, Suitberto cabrera
    Peterin, Iztik
    Yero, Ismael G.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (01): : 153 - 168
  • [43] Domination number, independent domination number and k-independence number in trees
    Cui, Qing
    Zou, Xu
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 176 - 184
  • [44] Total Domination on Tree Operators
    Bermudo, Sergio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [45] Total Domination on Tree Operators
    Sergio Bermudo
    Mediterranean Journal of Mathematics, 2023, 20
  • [46] On trees with total domination number equal to edge-vertex domination number plus one
    B KRISHNAKUMARI
    Y B VENKATAKRISHNAN
    MARCIN KRZYWKOWSKI
    Proceedings - Mathematical Sciences, 2016, 126 : 153 - 157
  • [47] On trees with total domination number equal to edge-vertex domination number plus one
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    Krzywkowski, Marcin
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 153 - 157
  • [48] On Computational and Combinatorial Properties of the Total Co-independent Domination Number of Graphs
    Cabrera Martinez, Abel
    Hernandez Mira, Frank A.
    Sigarreta Almira, Jose M.
    Yero, Ismael G.
    COMPUTER JOURNAL, 2019, 62 (01): : 97 - 108
  • [49] On graphs for which the connected domination number is at most the total domination number
    Schaudt, Oliver
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1281 - 1284
  • [50] Bounds on the hop domination number of a tree
    S K AYYASWAMY
    B KRISHNAKUMARI
    C NATARAJAN
    Y B VENKATAKRISHNAN
    Proceedings - Mathematical Sciences, 2015, 125 : 449 - 455