AN UPPER BOUND ON THE TOTAL OUTER-INDEPENDENT DOMINATION NUMBER OF A TREE

被引:3
|
作者
Krzywkowski, Malvin [1 ]
机构
[1] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Ul Narutowicza 11-12, PL-80233 Gdansk, Poland
关键词
total outer-independent domination; total domination; tree;
D O I
10.7494/OpMath.2012.32.1.153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A total outer-independent dominating set of a graph G = (V (G); E (G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \ D is independent. The total outer-independent domination number of a graph G, denoted by rt(oi) (G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have rt(oi) (T) <= (2 n + s - l)/3, and we characterize the trees attaining this upper bound.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 50 条
  • [31] Bipartite Theory of Graphs: Outer-Independent Domination
    Marcin Krzywkowski
    Yanamandram B. Venkatakrishnan
    National Academy Science Letters, 2015, 38 : 169 - 172
  • [32] An improved upper bound on the domination number of a tree
    Cabrera-Martinez, Abel
    DISCRETE APPLIED MATHEMATICS, 2024, 343 : 44 - 48
  • [33] HARDNESS RESULT OF OUTER-INDEPENDENT TOTAL ROMAN DOMINATION IN CHALLENGING FUZZY GRAPHS
    Kalaiselvi, S.
    Jebamani, J. Golden Ebenezer
    Namasivayam, P.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 705 - 713
  • [34] On the Outer-Independent Double Roman Domination of Graphs
    Rao, Yongsheng
    Kosari, Saeed
    Sheikholeslami, Seyed Mahmoud
    Chellali, M.
    Kheibari, Mahla
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 6
  • [35] Outer-Independent Roman Domination on Cartesian Product of Paths
    Junzhe GUO
    Hong GAO
    Yuansheng YANG
    Journal of Mathematical Research with Applications, 2025, 45 (01) : 11 - 19
  • [36] Outer independent total double Italian domination number
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2024, 32 (01) : 19 - 37
  • [37] A new lower bound for the independent domination number of a tree
    Cabrera-Martinez, Abel
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 1951 - 1956
  • [38] On three outer-independent domination related parameters in graphs
    Mojdeh, Doost Ali
    Peterin, Iztok
    Samadi, Babak
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2021, 294 : 115 - 124
  • [39] A New Lower Bound on the Total Domination Number of a Tree
    Desormeaux, Wyatt J.
    Henning, Michael A.
    ARS COMBINATORIA, 2018, 138 : 305 - 322
  • [40] An Upper Bound for the Total Domination Subdivision Number of a Graph
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    Khodkar, A.
    GRAPHS AND COMBINATORICS, 2009, 25 (05) : 727 - 733