STOCHASTIC MONOTONICITY AND SLEPIAN-TYPE INEQUALITIES FOR INFINITELY DIVISIBLE AND STABLE RANDOM VECTORS

被引:16
作者
SAMORODNITSKY, G [1 ]
TAQQU, MS [1 ]
机构
[1] BOSTON UNIV, DEPT MATH, BOSTON, MA 02215 USA
关键词
STOCHASTIC DOMINATION; SLEPIAN INEQUALITY; INFINITELY DIVISIBLE DISTRIBUTIONS; STABLE DISTRIBUTIONS;
D O I
10.1214/aop/1176989397
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the relation between stochastic domination of an infinitely divisible random vector X by another infinitely divisible random vector Y and their corresponding Levy measures. The results are used to derive a Slepian-type inequality for a general class of symmetric infinitely divisible random vectors.
引用
收藏
页码:143 / 160
页数:18
相关论文
共 19 条
  • [1] Billingsley P., 1985, PROBABILITY MEASURE
  • [2] INEQUALITIES FOR MULTIVARIATE INFINITELY DIVISIBLE PROCESSES
    BROWN, LD
    RINOTT, Y
    [J]. ANNALS OF PROBABILITY, 1988, 16 (02) : 642 - 657
  • [3] DUDLEY RM, 1989, REAL ANAL PROBABILIT
  • [4] Feller W., 1971, INTRO PROBABILITY TH, VVolume II
  • [5] Fernique X., 1975, LECT NOTES MATH, P1
  • [6] ASSOCIATION OF NORMAL RANDOM-VARIABLES AND SLEPIANS INEQUALITY
    JOAGDEV, K
    PERLMAN, MD
    PITT, LD
    [J]. ANNALS OF PROBABILITY, 1983, 11 (02) : 451 - 455
  • [7] Kemperman, 1977, INDAG MATH, V80, DOI [10.1016/1385-7258(77)90027-0, DOI 10.1016/1385-7258(77)90027-0]
  • [8] REPRESENTATION THEOREM FOR SYMMETRIC STABLE PROCESSES AND STABLE MEASURES ON H
    KUELBS, J
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 26 (04): : 259 - 271
  • [9] Ledoux M., 1991, PROBABILITY BANACH S
  • [10] ASSOCIATION OF STABLE RANDOM-VARIABLES
    LEE, MLT
    RACHEV, ST
    SAMORODNITSKY, G
    [J]. ANNALS OF PROBABILITY, 1990, 18 (04) : 1759 - 1764