STOCHASTIC MONOTONICITY AND SLEPIAN-TYPE INEQUALITIES FOR INFINITELY DIVISIBLE AND STABLE RANDOM VECTORS

被引:16
作者
SAMORODNITSKY, G [1 ]
TAQQU, MS [1 ]
机构
[1] BOSTON UNIV, DEPT MATH, BOSTON, MA 02215 USA
关键词
STOCHASTIC DOMINATION; SLEPIAN INEQUALITY; INFINITELY DIVISIBLE DISTRIBUTIONS; STABLE DISTRIBUTIONS;
D O I
10.1214/aop/1176989397
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the relation between stochastic domination of an infinitely divisible random vector X by another infinitely divisible random vector Y and their corresponding Levy measures. The results are used to derive a Slepian-type inequality for a general class of symmetric infinitely divisible random vectors.
引用
收藏
页码:143 / 160
页数:18
相关论文
共 19 条
[1]  
Billingsley P., 1985, PROBABILITY MEASURE
[2]   INEQUALITIES FOR MULTIVARIATE INFINITELY DIVISIBLE PROCESSES [J].
BROWN, LD ;
RINOTT, Y .
ANNALS OF PROBABILITY, 1988, 16 (02) :642-657
[3]  
DUDLEY RM, 1989, REAL ANAL PROBABILIT
[4]  
Feller W., 1971, INTRO PROBABILITY TH, VVolume II
[5]  
Fernique X., 1975, LECT NOTES MATH, P1
[6]   ASSOCIATION OF NORMAL RANDOM-VARIABLES AND SLEPIANS INEQUALITY [J].
JOAGDEV, K ;
PERLMAN, MD ;
PITT, LD .
ANNALS OF PROBABILITY, 1983, 11 (02) :451-455
[7]  
Kemperman, 1977, INDAG MATH, V80, DOI [10.1016/1385-7258(77)90027-0, DOI 10.1016/1385-7258(77)90027-0]
[8]   REPRESENTATION THEOREM FOR SYMMETRIC STABLE PROCESSES AND STABLE MEASURES ON H [J].
KUELBS, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 26 (04) :259-271
[9]  
Ledoux M., 1991, PROBABILITY BANACH S
[10]   ASSOCIATION OF STABLE RANDOM-VARIABLES [J].
LEE, MLT ;
RACHEV, ST ;
SAMORODNITSKY, G .
ANNALS OF PROBABILITY, 1990, 18 (04) :1759-1764