ON THE REGULARITY OF THE MINIMUM SOLUTION OF THE RESTRAINED VARIATIONAL-PROBLEMS

被引:0
作者
SHEN, YT
GUO, XK
机构
[1] S CHINA UNIV TECH,DEPT APPL MATH,CANTON 510641,PEOPLES R CHINA
[2] GUANGXI UNIV,INST MATH,NANNING 530004,PEOPLES R CHINA
关键词
D O I
10.1016/S0252-9602(18)30216-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the regularity of minimum solution u of the following functional L(u) = integral(Omega) a alpha(beta)(x)g(ij)(u)D alpha u(i)D(beta)upsilon(i)dx on the restraint E = {u is an element of W-0(1,2) (Omega, R(N))\parallel to u parallel to L(D) = 1}. Under appropriate conditions, the bounded minimum solution u of the above functional is proved to be nothing but Holder continuous.
引用
收藏
页码:266 / 272
页数:7
相关论文
共 5 条
[1]   ON THE REGULARITY OF THE MINIMA OF VARIATIONAL INTEGRALS [J].
GIAQUINTA, M ;
GIUSTI, E .
ACTA MATHEMATICA, 1982, 148 :31-46
[2]  
Giaquinta M., 1983, MULTIPLE INTEGRALS C, V105
[3]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF
[4]  
HILDEBRANDT S, 1984, LECTURE NOTES, V1161
[5]  
QING J, IN PRESS REGULARITY