Lie group integrators with non-autonomous frozen vector fields

被引:0
作者
Minchev, Borislav V. [1 ]
机构
[1] Univ Wales Bangor, Sch Informat, Dept Math, Bangor LL57 1UT, Gwynedd, Wales
关键词
algebra action; exponential integrators; Lie group methods; stiff systems;
D O I
10.1504/IJCSE.2007.018268
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lie group methods for non-autonomous semi-discretised in space, partial differential equations are considered. The use of time-dependent frozen vector fields and their corresponding algebra actions on a manifold is introduced. A new integration scheme, for the numerical solution of semi-linear problems, based on the so-called 'comutator-free Lie group methods', with algebra action arising from the prposed new framework is derived. The scheme is then compared with some existing methods in several numerical experiments.
引用
收藏
页码:287 / 294
页数:8
相关论文
共 17 条
[1]  
Berland H., 2005, P 46 SIMS C SIM MOD, P9
[2]   Commutator-free Lie group methods [J].
Celledoni, E ;
Marthinsen, A ;
Owren, B .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (03) :341-352
[3]  
Celledoni E., 2004, CRM P LECT NOTES, V39, P1065
[4]   Exponential Runge-Kutta methods for parabolic problems [J].
Hochbruck, M ;
Ostermann, A .
APPLIED NUMERICAL MATHEMATICS, 2005, 53 (2-4) :323-339
[5]   Explicit exponential Runge-Kutta methods for semilinear parabolic problems [J].
Hochbruck, M ;
Ostermann, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) :1069-1090
[6]  
Iserles A., 2000, Acta Numerica, V9, P215, DOI 10.1017/S0962492900002154
[7]   Fourth-order time-stepping for stiff PDEs [J].
Kassam, AK ;
Trefethen, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04) :1214-1233
[8]   Generalized integrating factor methods for stiff PDEs [J].
Krogstad, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :72-88
[9]  
Krogstad S, 2003, THESIS
[10]  
Lawson J., 1969, SIAM J NUMER ANAL, V4, P372