DISPERSIVE OPTICAL BISTABILITY FOR LARGE PHOTON NUMBERS AND LOW CAVITY DAMPING

被引:14
作者
VOGEL, K
RISKEN, H
机构
[1] Abteilung F̈r Theoretische Physik, Universität Ulm
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 01期
关键词
D O I
10.1103/PhysRevA.42.627
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For a quantum-mechanical model of dispersive optical bistability we derive in the classical limit, i.e., for large photon numbers, a two-variable Fokker-Planck equation. For low cavity damping this Fokker-Planck equation can be approximated by a one-variable Fokker-Planck equation which is solved numerically. If, in addition, the number of thermal photons is small compared with the number of photons inside the cavity, an analytical result for the transition rate is obtained. © 1990 The American Physical Society.
引用
收藏
页码:627 / 638
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1989, FOKKERPLANCK EQUATIO
[2]   ESCAPE-ENERGY DISTRIBUTION FOR PARTICLES IN AN EXTREMELY UNDERDAMPED POTENTIAL WELL [J].
BUTTIKER, M ;
LANDAUER, R .
PHYSICAL REVIEW B, 1984, 30 (03) :1551-1553
[3]   QUANTUM-THEORY OF OPTICAL BISTABILITY .1. NON-LINEAR POLARIZABILITY MODEL [J].
DRUMMOND, PD ;
WALLS, DF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (02) :725-741
[4]   QUANTUM OPTICAL TUNNELING - A REPRESENTATION-FREE THEORY VALID NEAR THE STATE-EQUATION TURNING-POINTS [J].
DRUMMOND, PD .
PHYSICAL REVIEW A, 1986, 33 (06) :4462-4464
[5]  
Duffing G., 1918, ERZWUNGENE SCHWINGUN, V7
[6]  
DYKMAN MI, 1989, ZH EKSP TEOR FIZ, V67, P1769
[7]   NOISE-INDUCED SWITCHING OF PHOTONIC LOGIC ELEMENTS [J].
FILIPOWICZ, P ;
GARRISON, JC ;
MEYSTRE, P ;
WRIGHT, EM .
PHYSICAL REVIEW A, 1987, 35 (03) :1172-1180
[8]  
Gradshteyn I.S., 1965, TABLES OF INTEGRALS
[9]   DISPERSIVE OPTICAL BISTABILITY WITH FLUCTUATIONS [J].
GRAHAM, R ;
SCHENZLE, A .
PHYSICAL REVIEW A, 1981, 23 (03) :1302-1321
[10]  
GROBNER W, 1975, INTEGRALTAFEL E