ADDITIVE SCHWARZ ALGORITHMS FOR PARABOLIC CONVECTION-DIFFUSION EQUATIONS

被引:139
作者
CAI, XC
机构
[1] Department of Mathematics, University of Kentucky, Lexington, 40506, KY
关键词
D O I
10.1007/BF01385713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the solution of linear systems of algebraic equations that arise from parabolic finite element problems. We introduce three additive Schwarz type domain decomposition methods for general, not necessarily selfadjoint, linear, second order, parabolic partial differential equations and also study the convergence rates of these algorithms. The resulting preconditioned linear system of equations is solved by the generalized minimal residual method. Numerical results are also reported.
引用
收藏
页码:41 / 61
页数:21
相关论文
共 24 条
[1]  
BABUSKA I, 1972, MATH F FINITE ELEMEN
[2]  
BJORSTAD PE, 1986, SIAM J NUMER ANAL, V23, P1093
[3]  
BRAMBLE JH, 1987, MATH COMPUT, V49, P1, DOI 10.1090/S0025-5718-1987-0890250-4
[4]  
BRAMBLE JH, 1989, MATH COMPUT, V53, P1
[5]  
BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3
[6]   A 2ND ORDER FINITE DIFFERENCE ANALOG OF FIRST BIHARMONIC BOUNDARY VALUE PROBLEM [J].
BRAMBLE, JH .
NUMERISCHE MATHEMATIK, 1966, 9 (03) :236-&
[7]   THE CONSTRUCTION OF PRECONDITIONERS FOR ELLIPTIC PROBLEMS BY SUBSTRUCTURING .3. [J].
BRAMBLE, JH ;
PASCIAK, JE ;
SCHATZ, AH .
MATHEMATICS OF COMPUTATION, 1988, 51 (184) :415-430
[8]  
CAI XC, 1990, CCS907 U KENT CTR CO
[9]  
CAI XC, 1990, 3RD INT S DOM DEC ME
[10]  
CAI XC, 1989, THESIS COURANT I