Effects of Synaptic Plasticity on Phase and Period Locking in a Network of Two Oscillatory Neurons

被引:9
作者
Akcay, Zeynep [1 ]
Bose, Amitabha [1 ]
Nadim, Farzan [1 ,2 ,3 ]
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Federated Dept Biol Sci, Newark, NJ 07102 USA
[3] Rutgers State Univ, Newark, NJ 07102 USA
来源
JOURNAL OF MATHEMATICAL NEUROSCIENCE | 2014年 / 4卷
基金
美国国家科学基金会;
关键词
Phase locking; Oscillatory neural network; Phase response curve; Short-term synaptic plasticity;
D O I
10.1186/2190-8567-4-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the effects of synaptic plasticity on the determination of firing period and relative phases in a network of two oscillatory neurons coupled with reciprocal inhibition. We combine the phase response curves of the neurons with the short-term synaptic plasticity properties of the synapses to define Poincare maps for the activity of an oscillatory network. Fixed points of these maps correspond to the phase-locked modes of the network. These maps allow us to analyze the dependence of the resulting network activity on the properties of network components. Using a combination of analysis and simulations, we show how various parameters of the model affect the existence and stability of phase-locked solutions. We find conditions on the synaptic plasticity profiles and the phase response curves of the neurons for the network to be able to maintain a constant firing period, while varying the phase of locking between the neurons or vice versa. A generalization to cobwebbing for two-dimensional maps is also discussed.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 27 条
  • [1] Synaptic computation
    Abbott, LF
    Regehr, WG
    [J]. NATURE, 2004, 431 (7010) : 796 - 803
  • [2] Phase-Resetting Curves Determine Synchronization, Phase Locking, and Clustering in Networks of Neural Oscillators
    Achuthan, Srisairam
    Canavier, Carmen C.
    [J]. JOURNAL OF NEUROSCIENCE, 2009, 29 (16) : 5218 - 5233
  • [3] Animal-to-animal variability in motor pattern production in adults and during growth
    Bucher, D
    Prinz, AA
    Marder, E
    [J]. JOURNAL OF NEUROSCIENCE, 2005, 25 (07) : 1611 - 1619
  • [4] Functional Phase Response Curves: A Method for Understanding Synchronization of Adapting Neurons
    Cui, Jianxia
    Canavier, Carmen C.
    Butera, Robert J.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2009, 102 (01) : 387 - 398
  • [5] A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators
    Dror, R
    Canavier, CC
    Butera, RJ
    Clark, JW
    Byrne, JH
    [J]. BIOLOGICAL CYBERNETICS, 1999, 80 (01) : 11 - 23
  • [6] Combining synaptic and cellular resonance in a feed-forward neuronal network
    Drover, Jonathan D.
    Tohidi, Vahid
    Bose, Amitabha
    Nadim, Farzan
    [J]. NEUROCOMPUTING, 2007, 70 (10-12) : 2041 - 2045
  • [7] Ermentrout, 2002, SIMULATING ANALYZING, Vvol. 14
  • [8] Ermentrout B, 2010, MATH FDN NEUROSCIENC
  • [9] N-M PHASE-LOCKING OF WEAKLY COUPLED OSCILLATORS
    ERMENTROUT, GB
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 12 (03) : 327 - 342
  • [10] Feng L, 2003, J NEUROSCI, V23, P5381