Implicit and semi-implicit well-balanced finite-volume methods for systems of balance laws

被引:0
作者
Gomez-Bueno, I. [1 ]
Boscarino, S. [2 ]
Castro, M. J. [1 ]
Pares, C. [1 ]
Russo, G. [2 ]
机构
[1] Univ Malaga, Fac Ciencias, Dept Anal Matemat Estadist IO & Matemat Aplicada, Malaga 29071, Spain
[2] Univ Catania, Dipartimento Matemat Informat, Viale Andrea Dona 6, I-95125 Catania, Italy
关键词
Systems of balance laws; Well-balanced methods; Finite-volume methods; High-order methods; Reconstruction operators; Implicit methods; Semi-implicit methods; Shallow water equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to design implicit and semi-implicit high-order well-balanced finite-volume numerical methods for 1D systems of balance laws. The strategy introduced by two of the authors in some previous papers for explicit schemes based on the applica-tion of a well-balanced reconstruction operator is applied. The well-balanced property is preserved when quadrature formulas are used to approximate the averages and the integral of the source term in the cells. Concerning the time evolution, this technique is combined with a time discretization method of type RK-IMEX or RK-implicit. The methodology will be applied to several systems of balance laws.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:18 / 48
页数:31
相关论文
共 93 条
[1]   HIGH-ORDER PRESERVING RESIDUAL DISTRIBUTION SCHEMES FOR ADVECTION-DIFFUSION SCALAR PROBLEMS ON ARBITRARY GRIDS [J].
Abgrall, R. ;
De Santis, D. ;
Ricchiuto, M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03) :A955-A983
[2]  
Arun Koottungal Revi, 2012, PREPRINTS
[3]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[4]   Linearly implicit all Machnumber shock capturing schemes for the Euler equations [J].
Avgerinos, Stavros ;
Bernard, Florian ;
Iollo, Angelo ;
Russo, Giovanni .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 393 :278-312
[5]   High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws [J].
Berberich, Jonas P. ;
Chandrashekar, Praveen ;
Klingenberg, Christian .
COMPUTERS & FLUIDS, 2021, 219
[6]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[7]   A simple fully well-balanced and entropy preserving scheme for the shallow-water equations [J].
Berthon, Christophe ;
Michel-Dansac, Victor .
APPLIED MATHEMATICS LETTERS, 2018, 86 :284-290
[8]   A FULLY WELL-BALANCED, POSITIVE AND ENTROPY-SATISFYING GODUNOV-TYPE METHOD FOR THE SHALLOW-WATER EQUATIONS [J].
Berthon, Christophe ;
Chalons, Christophe .
MATHEMATICS OF COMPUTATION, 2016, 85 (299) :1281-1307
[9]   Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization [J].
Bonaventura, Luca ;
Fernandez-Nieto, Enrique D. ;
Garres-Diaz, Jose ;
Narbona-Reina, Gladys .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 364 :209-234
[10]   All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics [J].
Boscarino, S. ;
Russo, G. ;
Scandurra, L. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) :850-884