Impact of the arterial input function on microvascularization parameter measurements using dynamic contrast-enhanced ultrasonography

被引:11
作者
Gauthier, Marianne [1 ]
Pitre-Champagnat, Stephanie [1 ]
Tabarout, Farid [1 ]
Leguerney, Ingrid [1 ]
Polrot, Melanie [2 ]
Lassau, Nathalie [1 ,3 ]
机构
[1] Inst Gustave Roussy, IR4M, UMR 8081, Pavillon Rech 1,39 Rue Camille Desmoulins, F-94805 Villejuif, France
[2] Inst Gustave Roussy, Serv Commun Experimentat Anim, F-94805 Villejuif, France
[3] Inst Gustave Roussy, Inst Rech Cancerol Villejuif, F-94805 Villejuif, France
来源
WORLD JOURNAL OF RADIOLOGY | 2012年 / 4卷 / 07期
关键词
Dynamic contrast-enhanced ultrasonography; Angiogenesis; Linear raw data; Arterial input function; Functional imaging;
D O I
10.4329/wjr.v4.i7.291
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
AIM: To evaluate the sources of variation influencing the microvascularization parameters measured by dynamic contrast-enhanced ultrasonography (DCE-US). METHODS: Firstly, we evaluated, in vitro, the impact of the manual repositioning of the ultrasound probe and the variations in flow rates. Experiments were conducted using a custom-made phantom setup simulating a tumor and its associated arterial input. Secondly, we evaluated, in vivo, the impact of multiple contrast agent injections and of examination day, as well as the influence of the size of region of interest (ROI) associated with the arterial input function (AIF). Experiments were conducted on xenografted B16F10 female nude mice. For all of the experiments, an ultrasound scanner along with a linear transducer was used to perform pulse inversion imaging based on linear raw data throughout the experiments. Semi-quantitative and quantitative analyses were performed using two signal-processing methods. RESULTS: In vitro, no microvascularization parameters, whether semi-quantitative or quantitative, were significantly correlated (P values from 0.059 to 0.860) with the repositioning of the probe. In addition, all semi-quantitative microvascularization parameters were correlated with the flow variation while only one quantitative parameter, the tumor blood flow, exhibited P value lower than 0.05 (P = 0.004). In vivo, multiple contrast agent injections had no significant impact (P values from 0.060 to 0.885) on microvascularization parameters. In addition, it was demonstrated that semi-quantitative microvascularization parameters were correlated with the tumor growth while among the quantitative parameters, only the tissue blood flow exhibited P value lower than 0.05 (P = 0.015). Based on these results, it was demonstrated that the ROI size of the AIF had significant influence on microvascularization parameters: in the context of larger arterial ROI (from 1.17 +/- 0.6 mm(3) to 3.65 +/- 0.3 mm(3)), tumor blood flow and tumor blood volume were correlated with the tumor growth, exhibiting P values lower than 0.001. CONCLUSION: AIF selection is an essential aspect of the deconvolution process to validate the quantitative DCE-US method. (c) 2012 Baishideng. All rights reserved.
引用
收藏
页码:291 / 301
页数:11
相关论文
共 63 条