Aerodynamic Optimization of Airfoil Profiles for Small Horizontal Axis Wind Turbines

被引:22
|
作者
Benim, Ali Cemal [1 ,2 ]
Diederich, Michael [1 ]
Pfeiffelmann, Bjoern [1 ]
机构
[1] Dusseldorf Univ Appl Sci, Ctr Flow Simulat, Dept Mech & Proc Engn, Munsterstr 156, D-40476 Dusseldorf, Germany
[2] Cracow Univ Technol, Inst Thermal Power Engn, Dept Mech Engn, Jana Pawla II 37, PL-31864 Krakow, Poland
来源
COMPUTATION | 2018年 / 6卷 / 02期
关键词
CFD; RSM; RANS; BiMADS; HAWT; wind turbine; airfoil; aerodynamics; optimization;
D O I
10.3390/computation6020034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this study is the development of an automated two-dimensional airfoil shape optimization procedure for small horizontal axis wind turbines (HAWT), with an emphasis on high thrust and aerodynamically stable performance. The procedure combines the Computational Fluid Dynamics (CFD) analysis with the Response Surface Methodology (RSM), the Biobjective Mesh Adaptive Direct Search (BiMADS) optimization algorithm and an automatic geometry and mesh generation tool. In CFD analysis, a Reynolds Averaged Numerical Simulation (RANS) is applied in combination with a two-equation turbulence model. For describing the system behaviour under alternating wind conditions, a number of CFD 2D-RANS-Simulations with varying Reynolds numbers and wind angles are performed. The number of cases is reduced by the use of RSM. In the analysis, an emphasis is placed upon the role of the blade-to-blade interaction. The average and the standard deviation of the thrust are optimized by a derivative-free optimization algorithm to define a Pareto optimal set, using the BiMADS algorithm. The results show that improvements in the performance can be achieved by modifications of the blade shape and the present procedure can be used as an effective tool for blade shape optimization.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Airfoil optimization for small horizontal axis wind turbine
    Rojas C.L.P.
    Suarez C.A.T.
    Rico J.C.S.
    Serrano E.G.F.
    Renewable Energy and Power Quality Journal, 2021, 19 : 505 - 510
  • [2] Design of a low Reynolds number airfoil for small horizontal axis wind turbines
    Singh, Ronit K.
    Ahmed, M. Rafiuddin
    Zullah, Mohammad Asid
    Lee, Young-Ho
    RENEWABLE ENERGY, 2012, 42 : 66 - 76
  • [3] Optimization of Small Horizontal Axis Wind Turbines Based on Aerodynamic, Steady-State, and Dynamic Analyses
    Deghoum, Khalil
    Gherbi, Mohammed Taher
    Sultan, Hakim S.
    Al-Tamimi, Adnan Jameel N.
    Abed, Azher M.
    Abdullah, Oday Ibraheem
    Mechakra, Hamza
    Boukhari, Ali
    APPLIED SYSTEM INNOVATION, 2023, 6 (02)
  • [4] Aerodynamic performance comparison of airfoils suggested for small horizontal axis wind turbines
    Noronha, Naveen Prakash
    Krishna, Munishamaih
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 2450 - 2455
  • [5] The aerodynamic effects of blade pitch angle on small horizontal axis wind turbines
    Kaya, Mehmet Numan
    Uzol, Oguz
    Ingham, Derek
    Kose, Faruk
    Buyukzeren, Riza
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2023, 33 (01) : 120 - 134
  • [6] APPROXIMATE AERODYNAMIC ANALYSIS FOR HORIZONTAL AXIS WIND TURBINES
    BEANS, EW
    JOURNAL OF ENERGY, 1983, 7 (03): : 243 - 249
  • [7] AERODYNAMIC PERFORMANCE OF VERTICAL AND HORIZONTAL AXIS WIND TURBINES
    MAYDEW, RC
    KLIMAS, PC
    JOURNAL OF ENERGY, 1981, 5 (03): : 189 - 190
  • [8] A Novel Low Reynolds Number Airfoil Design for Small Horizontal Axis Wind Turbines
    Shah, Haseeb
    Mathew, Sathyajith
    Lim, Chee Ming
    WIND ENGINEERING, 2014, 38 (04) : 377 - 391
  • [9] New airfoil families for horizontal-axis wind turbines
    Abdelrahman, Mohammad
    Hassanein, Atef
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2012, 4 (04) : 195 - 206
  • [10] Low Reynolds airfoil family for small horizontal axis wind turbines based on RG15 airfoil
    Stavros N. Leloudas
    Alexandros I. Eskantar
    Georgios N. Lygidakis
    Ioannis K. Nikolos
    SN Applied Sciences, 2020, 2