QUANTUM INSPIRED REINFORCEMENT LEARNING IN CHANGING ENVIRONMENT

被引:10
作者
Fakhari, Pegah [1 ]
Rajagopal, Karthikeyan [2 ]
Balakrishnan, S. N. [2 ]
Busemeyer, J. R. [1 ]
机构
[1] Indiana Univ, Dept Psychol & Brain Sci, Bloomington, IN 47405 USA
[2] Univ Mississippi, Dept Mech Aerosp & Engn Mech, Rolla, MO 38677 USA
基金
美国国家科学基金会;
关键词
Reinforcement learning; quantum RL; prey and predator dilemma;
D O I
10.1142/S1793005713400073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by quantum theory and reinforcement learning, a new framework of learning in unknown probabilistic environment is proposed. Several simulated experiments are given; the results demonstrate the robustness of the new algorithm for some complex problems. Also we generalized the Grover algorithm to improve the rate of converging to an optimal path. In other words, the new generalized algorithm helps to increase the probability of selecting good actions with better weights' adjustments.
引用
收藏
页码:273 / 294
页数:22
相关论文
共 10 条
  • [1] Bertsekas D. P., 1996, NEURO DYNAMIC PROGRA
  • [2] Busemeyer J. R., 2012, QUANTUM MODELS COGNI, DOI [10.1017/CBO9780511997716, DOI 10.1017/CBO9780511997716]
  • [3] Quantum reinforcement learning
    Dong, Daoyi
    Chen, Chunlin
    Li, Hanxiong
    Tarn, Tzyh-Jong
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (05): : 1207 - 1220
  • [4] Dong DY, 2005, LECT NOTES COMPUT SC, V3611, P686
  • [5] Even-Dar E, 2003, J MACH LEARN RES, V5, P1
  • [6] Grover L. K., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P212, DOI 10.1145/237814.237866
  • [7] Quantum mechanics helps in searching for a needle in a haystack
    Grover, LK
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (02) : 325 - 328
  • [8] Shor P. W., 1994, Proceedings. 35th Annual Symposium on Foundations of Computer Science (Cat. No.94CH35717), P124, DOI 10.1109/SFCS.1994.365700
  • [9] Sutton R. S., 1988, Machine Learning, V3, P9, DOI 10.1007/BF00115009
  • [10] Sutton R. S., 1998, INTRO REINFORCEMENT, V2