OPTIMAL BACKWARD PERTURBATION BOUNDS FOR THE LINEAR LEAST-SQUARES PROBLEM

被引:41
作者
WALDEN, B [1 ]
KARLSON, R [1 ]
SUN, JG [1 ]
机构
[1] UMEA UNIV,INST INFORMAT PROC,S-90187 UMEA,SWEDEN
关键词
LINEAR LEAST SQUARES; BACKWARD PERTURBATIONS;
D O I
10.1002/nla.1680020308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an m x n matrix, b be an m-vector, and ($) over tilde x: be a purported solution to the problem of minimizing \\b - Ax\\(2). We consider the following open problem: find the smallest perturbation E of A such that the vector ($) over tilde x exactly minimizes \\b - (A + E)x\\(2). This problem is completely solved when E is measured in the Frobenius norm. When using the spectral norm of E, upper and lower bounds are given, and the optimum is found under certain conditions.
引用
收藏
页码:271 / 286
页数:16
相关论文
共 6 条
[1]  
GOLUB GH, 1989, MATRIX COMPUTATIONS
[2]  
Higham NJ, 1990, CONT MATH, V112, P195
[3]  
RIGAL JL, 1967, J ASSOC COMPUT MACH, P543
[4]  
Stewart G., 1990, MATRIX PERTURBATION
[5]  
STEWART GW, 1977, MATH SOFTWARE, V3, P1
[6]  
SUN JG, 1991, UNPUB IMPROVED BACKW