BRAIN ACTIVITY DETECTION Statistical Analysis of fMRI Data

被引:0
|
作者
Quiros Carretero, Alicia [1 ]
Montes Diez, Raquel [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Estadist & Invest Operat, Madrid, Spain
来源
BIOSIGNALS 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING | 2009年
关键词
Bayesian inference; fMRI; Activity detection; GMRF; INDEPENDENT COMPONENT ANALYSIS; TIME-SERIES; SPATIAL PRIORS; FUNCTIONAL MRI; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We are concerned with modelling and analysing fMRI data. An fMRI experiment is a series of images obtained over time under two different conditions, in which regions of activity are detected by observing differences in blood magnetism due to hemodynamic response. In this paper we propose a spatiotemporal model for detecting brain activity in fMRI. The model makes no assumptions about the shape or form of activated areas, except that they emit higher signals in response to a stimulus than non-activated areas do, and that they form connected regions. The Bayesian spatial prior distributions provide a framework for detecting active regions much as a neurologist might; based on posterior evidence over a wide range of spatial scales, simultaneously considering the level of the voxel magnitudes together with the size of the activated area. A single spatiotemporal Bayesian model allows more information to be obtained about the corresponding magnetic resonance study. Despite higher computational cost, a spatiotemporal model improves the inference ability since it takes into account the uncertainty in both the spatial and the temporal dimension. A simulated study is used to test the model applicability and sensitivity.
引用
收藏
页码:434 / 439
页数:6
相关论文
共 50 条
  • [41] Assessing a signal model and identifying brain activity from fMRI data by a detrending-based fractal analysis
    Hu, Jing
    Lee, Jae-Min
    Gao, Jianbo
    White, Keith D.
    Crosson, Bruce
    BRAIN STRUCTURE & FUNCTION, 2008, 212 (05) : 417 - 426
  • [42] Multimodal Integration of fMRI and EEG Data for High Spatial and Temporal Resolution Analysis of Brain Networks
    Mantini, D.
    Marzetti, L.
    Corbetta, M.
    Romani, G. L.
    Del Gratta, C.
    BRAIN TOPOGRAPHY, 2010, 23 (02) : 150 - 158
  • [43] Model-free analysis of brain fMRI data by recurrence quantification
    Bianciardi, Marta
    Sirabella, Paolo
    Hagberg, Gisela E.
    Giuliani, Alessandro
    Zbilut, Joseph P.
    Colosimo, Alfredo
    NEUROIMAGE, 2007, 37 (02) : 489 - 503
  • [44] Comparison of two different approaches for brain activity detection in FMRI: SPM-MAP AND SPM-GLM
    Sanches, Joao
    Afonso, David
    Bartnykas, Kestutis
    Lauterbach, Martin H.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 596 - +
  • [45] Data Driven Analysis of Functional Brain Networks in fMRI for Schizophrenia Investigation
    Mascolo, Luigi
    Guccione, Pietro
    Nico, Giovanni
    Taurisano, Paolo
    Fazio, Leonardo
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2014, 24 (03) : 239 - 248
  • [46] Comparison of Multi-Subject ICA Methods for Analysis of fMRI Data
    Erhardt, Erik Barry
    Rachakonda, Srinivas
    Bedrick, Edward J.
    Allen, Elena A.
    Adali, Tuelay
    Calhoun, Vince D.
    HUMAN BRAIN MAPPING, 2011, 32 (12) : 2075 - 2095
  • [47] LISA improves statistical analysis for fMRI
    Lohmann, Gabriele
    Stelzer, Johannes
    Lacosse, Eric
    Kumar, Vinod J.
    Mueller, Karsten
    Kuehn, Esther
    Grodd, Wolfgang
    Scheffler, Klaus
    NATURE COMMUNICATIONS, 2018, 9
  • [48] Statistical analysis of fMRI using wavelets: Big Data, denoising, large-p-small-n matrices
    Efromovich, Sam
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2019, 11 (05)
  • [49] Interaction of brain areas of visual and vestibular simultaneous activity with fMRI
    Della-Justina, Hellen M.
    Gamba, Humberto R.
    Lukasova, Katerina
    Nucci-da-Silva, Mariana P.
    Winkler, Anderson M.
    Amaro, Edson, Jr.
    EXPERIMENTAL BRAIN RESEARCH, 2015, 233 (01) : 237 - 252
  • [50] Dynamics of Brain Activity during Voluntary Movement: fMRI Study
    Sedov, A. S.
    Devetiarov, D. A.
    Semenova, U. N.
    Zavyalova, V. V.
    Ushakov, V. L.
    Medvednik, R. S.
    Ublinsky, M. V.
    Akhadov, T. A.
    Semenova, N. A.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2015, 65 (04) : 436 - 445