2-DIMENSIONAL ADVECTION-DIFFUSION EQUATIONS WITH CONSTANT LIMITING SOLUTIONS

被引:0
作者
HOWES, FA
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of solutions of two-component systems of equations in two dimensions that are related to the steady streamfunction-vorticity equations for large values of the Reynolds number. In particular, we determine the value of the constant limiting "vorticity" under certain circumstances.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 50 条
[41]   Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term [J].
Jannelli, Alessandra ;
Ruggieri, Marianna ;
Speciale, Maria Paola .
APPLIED NUMERICAL MATHEMATICS, 2020, 155 :93-102
[42]   Advection-diffusion equations for generalized tactic searching behaviors [J].
Grünbaum, D .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (02) :169-194
[43]   Deformation Formulas and Inverse Problems for Advection-diffusion Equations [J].
Nakagiri, Shin-ichi .
SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY, 2012, 37 :61-78
[44]   Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative [J].
Xu, Yufeng ;
He, Zhimin ;
Xu, Qinwu .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (03) :588-600
[45]   ON DESTABILIZING IMPLICIT FACTORS IN DISCRETE ADVECTION-DIFFUSION EQUATIONS [J].
BECKERS, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (02) :260-265
[46]   Optimal control and numerical adaptivity for advection-diffusion equations [J].
Dede', L ;
Quarteroni, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (05) :1019-1040
[47]   A NEW SCHEME FOR THE APPROXIMATION OF ADVECTION-DIFFUSION EQUATIONS BY COLLOCATION [J].
FUNARO, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) :1664-1676
[48]   A CHEBYSHEV COLLOCATION ALGORITHM FOR THE SOLUTION OF ADVECTION-DIFFUSION EQUATIONS [J].
PINELLI, A ;
BENOCCI, C ;
DEVILLE, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :201-210
[49]   Perfectly matched layers for the heat and advection-diffusion equations [J].
Lantos, Nicolas ;
Nataf, Frederic .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (24) :9042-9052
[50]   Stability and consistency of kinetic upwinding for advection-diffusion equations [J].
Torrilhon, Manuel ;
Xu, Kun .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) :686-722