2-DIMENSIONAL ADVECTION-DIFFUSION EQUATIONS WITH CONSTANT LIMITING SOLUTIONS

被引:0
作者
HOWES, FA
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of solutions of two-component systems of equations in two dimensions that are related to the steady streamfunction-vorticity equations for large values of the Reynolds number. In particular, we determine the value of the constant limiting "vorticity" under certain circumstances.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 50 条
[31]   Uniform error estimates for triangular finite element solutions of advection-diffusion equations [J].
Chen, Hongtao ;
Lin, Qun ;
Zhou, Junming ;
Wang, Hong .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (01) :83-100
[32]   Uniform error estimates for triangular finite element solutions of advection-diffusion equations [J].
Hongtao Chen ;
Qun Lin ;
Junming Zhou ;
Hong Wang .
Advances in Computational Mathematics, 2013, 38 :83-100
[33]   Some Stability Results for Advection-Diffusion Equations [J].
Howes, F.A. .
Studies in Applied Mathematics, 1986, 74 (01) :35-53
[34]   Solutions of fuzzy advection-diffusion and heat equations by natural adomian decomposition method [J].
Jamal, Noor ;
Sarwar, Muhammad ;
Agarwal, Parveen ;
Mlaiki, Nabil ;
Aloqaily, Ahmad .
SCIENTIFIC REPORTS, 2023, 13 (01)
[35]   Semi-analytical solutions to one-dimensional advection-diffusion equations with variable diffusion coefficient and variable flow velocity [J].
Jia, Xinfeng ;
Zeng, Fanhua ;
Gu, Yongan .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 :268-281
[36]   The solution of two-dimensional advection-diffusion equations via operational matrices [J].
de la Hoz, Francisco ;
Vadillo, Fernando .
APPLIED NUMERICAL MATHEMATICS, 2013, 72 :172-187
[37]   Some asymptotic properties for solutions of one-dimensional advection-diffusion equations with Cauchy data in LP(R) [J].
Silva, PBE ;
Zingano, PR .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :465-467
[38]   An ELLAM scheme for advection-diffusion equations in two dimensions [J].
Wang, H ;
Dahle, HK ;
Ewing, RE ;
Espedal, MS ;
Sharpley, RC ;
Man, SS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :2160-2194
[39]   Perfectly matched layers for the heat and advection-diffusion equations [J].
Lantos, Nicolas ;
Nataf, Frederic .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) :781-785
[40]   A moving mesh mixed method for advection-diffusion equations [J].
Liu, Y ;
Santos, RE .
COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE, PROCEEDINGS, 2003, :285-292