2-DIMENSIONAL ADVECTION-DIFFUSION EQUATIONS WITH CONSTANT LIMITING SOLUTIONS

被引:0
作者
HOWES, FA
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of solutions of two-component systems of equations in two dimensions that are related to the steady streamfunction-vorticity equations for large values of the Reynolds number. In particular, we determine the value of the constant limiting "vorticity" under certain circumstances.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 50 条
[21]   Multidomain finite elements for advection-diffusion equations [J].
Trotta, RL .
APPLIED NUMERICAL MATHEMATICS, 1996, 21 (01) :91-118
[22]   Moments for Tempered Fractional Advection-Diffusion Equations [J].
Yong Zhang .
Journal of Statistical Physics, 2010, 139 :915-939
[23]   Computational technique for heat and advection-diffusion equations [J].
Jena, Saumya Ranjan ;
Gebremedhin, Guesh Simretab .
SOFT COMPUTING, 2021, 25 (16) :11139-11150
[24]   Multidomain finite elements for advection-diffusion equations [J].
Universita degli Studi di Trento, Trento, Italy .
Appl Numer Math, 1 (91-118)
[25]   Solutions of fuzzy advection-diffusion and heat equations by natural adomian decomposition method [J].
Noor Jamal ;
Muhammad Sarwar ;
Parveen Agarwal ;
Nabil Mlaiki ;
Ahmad Aloqaily .
Scientific Reports, 13
[26]   Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations [J].
Tawfik, Ashraf M. ;
Fichtner, Horst ;
Schlickeiser, Reinhard ;
Elhanbaly, A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 :810-819
[27]   Global existence results for solutions of general conservative advection-diffusion equations in R [J].
Guidolin, P. L. ;
Schutz, L. ;
Ziebell, J. S. ;
Zingano, J. P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
[28]   A Comparison of Closures for Stochastic Advection-Diffusion Equations [J].
Jarman, K. D. ;
Tartakovsky, A. M. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01) :319-347
[29]   Biological modeling with nonlocal advection-diffusion equations [J].
Painter, Kevin J. ;
Hillen, Thomas ;
Potts, Jonathan R. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (01) :57-107
[30]   Moments for Tempered Fractional Advection-Diffusion Equations [J].
Zhang, Yong .
JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (05) :915-939