THE COMPLEXITY OF POINT CONFIGURATIONS

被引:19
作者
GOODMAN, JE [1 ]
POLLACK, R [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
基金
美国国家科学基金会;
关键词
D O I
10.1016/0166-218X(91)90068-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are several natural ways to extend the notion of the order of points on a line to higher dimensions. This article focuses on three of them-combinatorial type, order type, and isotopy class-and surveys work done in recent years on the efficient encoding of order types and on complexity questions relating to all three classifications.
引用
收藏
页码:167 / 180
页数:14
相关论文
共 44 条
[1]   THE NUMBER OF POLYTOPES, CONFIGURATIONS AND REAL MATROIDS [J].
ALON, N .
MATHEMATIKA, 1986, 33 (65) :62-71
[2]   THE NUMBER OF SMALL SEMISPACES OF A FINITE-SET OF POINTS IN THE PLANE [J].
ALON, N ;
GYORI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (01) :154-157
[3]  
[Anonymous], 1982, GEOMET DEDICATA
[4]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[5]   ON THE LATTICE PROPERTY OF THE PLANE AND SOME PROBLEMS OF DIRAC, MOTZKIN AND ERDOS IN COMBINATORIAL GEOMETRY [J].
BECK, J .
COMBINATORICA, 1983, 3 (3-4) :281-297
[6]   TRIANGULATIONS OF ORIENTED MATROIDS AND CONVEX POLYTOPES [J].
BILLERA, LJ ;
MUNSON, BS .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (04) :515-525
[7]   ORIENTABILITY OF MATROIDS [J].
BLAND, RG ;
LASVERGNAS, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 24 (01) :94-123
[8]  
BOKOWSKI J, 1989, LECTURE NOTES MATH, V1355
[9]  
CHAZELLE B, 1987, PROBLEM 3 6 3RD COMP
[10]  
Cordovil R., 1982, EUROPEAN J COMBIN, V3, P307