Optimal Diffusion Processes

被引:12
作者
Jafarizadeh, Saber [1 ]
机构
[1] Rakuten Inst Technol, Tokyo 1580094, Japan
来源
IEEE CONTROL SYSTEMS LETTERS | 2018年 / 2卷 / 03期
关键词
Stochastic differential equation; diffusion process; Fokker-plank equation; optimization;
D O I
10.1109/LCSYS.2018.2843172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Of stochastic differential equations, diffusion processes have been adopted in numerous applications, as more relevant and flexible models. This letter studies diffusion processes in a different setting, where for a given stationary distribution and average variance, it seeks the diffusion process with optimal convergence rate. It is shown that the optimal drift function is a linear function and the convergence rate of the stochastic process is bounded by the ratio of the average variance to the variance of the stationary distribution. Furthermore, the concavity of the optimal relaxation time as a function of the stationary distribution has been proven, and it is shown that all Pearson diffusion processes of the Hypergeometric type with polynomial functions of at most degree two as the variance functions are optimal.
引用
收藏
页码:465 / 470
页数:6
相关论文
共 21 条
[1]  
Bell W.W., 1968, SPECIAL FUNCTIONS SC
[2]  
Bibby BM, 2005, BERNOULLI, V11, P191
[3]  
Bishwal J.P, 2008, PARAMETER ESTIMATION, V1st
[4]  
Borodin AN., 2017, STOCHASTIC PROCESSES
[5]  
Courant R., 1965, WILEY CLASSICS LIB
[6]  
Ekeland I, 1976, CONVEX ANAL VARIATIO
[7]   Stochastic optimal control via forward and backward stochastic differential equations and importance sampling [J].
Exarchos, Ioannis ;
Theodorou, Evangelos A. .
AUTOMATICA, 2018, 87 :159-165
[8]   A Comprehensive Survey of Recent Advancements in Molecular Communication [J].
Farsad, Nariman ;
Yilmaz, H. Birkan ;
Eckford, Andrew ;
Chae, Chan-Byoung ;
Guo, Weisi .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2016, 18 (03) :1887-1919
[9]  
Hwang C. R., 1993, ANN APPL PROBAB, V3, P897
[10]  
Iacus SM, 2008, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-75839-8_1