HAMILTONIAN STUDIES OF THE TWO-DIMENSIONAL N-COMPONENT CUBIC MODEL .1.

被引:3
|
作者
IGLOI, F [1 ]
机构
[1] CENT RES INST PHYS,H-1525 BUDAPEST 114,HUNGARY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1986年 / 19卷 / 04期
关键词
D O I
10.1088/0305-4470/19/4/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:563 / 574
页数:12
相关论文
共 50 条
  • [41] Interpolation by two-dimensional cubic convolution
    Shi, JZ
    Reichenbach, SE
    VISUAL INFORMATION PROCESSING XII, 2003, 5108 : 135 - 146
  • [42] Renormalization group flows of the N-component Abelian Higgs model
    Fejos, G.
    Hatsuda, T.
    PHYSICAL REVIEW D, 2017, 96 (05)
  • [43] A Two-Dimensional port-Hamiltonian Model for Coupled Heat Transfer
    Jaeschke, Jens
    Ehrhardt, Matthias
    Guenther, Michael
    Jacob, Birgit
    MATHEMATICS, 2022, 10 (24)
  • [44] COEXISTENCE RELATIONS OF N+1 PHASES IN N-COMPONENT SYSTEMS
    PEPPER, PM
    JOURNAL OF APPLIED PHYSICS, 1949, 20 (08) : 754 - 760
  • [45] Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation
    Calabrese, P
    Orlov, EV
    Pakhnin, DV
    Sokolov, AI
    CONDENSED MATTER PHYSICS, 2005, 8 (01) : 193 - 211
  • [46] 2-BODY MICROCUTTING WEAR MODEL .1. TWO-DIMENSIONAL ROUGHNESS MODEL
    ZHANG, B
    XIE, YB
    WEAR, 1989, 129 (01) : 37 - 48
  • [47] MOMENT MODEL FOR VORTEX INTERACTIONS OF THE TWO-DIMENSIONAL EULER EQUATIONS. PART 1. COMPUTATIONAL VALIDATION OF A HAMILTONIAN ELLIPTICAL REPRESENTATION.
    Melander, M.V.
    Zabusky, N.J.
    Styczek, A.S.
    Journal of Fluid Mechanics, 1986, 167 : 95 - 115
  • [48] TWO-DIMENSIONAL KINEMATICS OF BOUNDED CURVATURE .1.
    GUREVICH, VL
    SIBERIAN MATHEMATICAL JOURNAL, 1981, 22 (05) : 653 - 672
  • [49] Open resonators with conducting cylindrical inserts. 1. Two-dimensional model
    Melezhik P.N.
    Miroshnichenko V.S.
    Senkevich Ye.B.
    Radiophysics and Quantum Electronics, 2005, 48 (7) : 529 - 536
  • [50] TWO-DIMENSIONAL LATTICE HAMILTONIAN FOR SURFACE RECONSTRUCTION
    HU, GY
    YING, SC
    SURFACE SCIENCE, 1985, 150 (01) : 47 - 54