THE DELTA-CORRECTED KOLMOGOROV SMIRNOV TEST FOR GOODNESS OF FIT

被引:25
作者
KHAMIS, HJ [1 ]
机构
[1] WRIGHT STATE UNIV,DEPT MATH & STAT,DAYTON,OH 45435
关键词
cumulative distribution function; distribution-free; Empirical distribution function; order statistic; plotting position; power;
D O I
10.1016/0378-3758(90)90051-U
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The empirical distribution function used in the classical Kolmogorov-Smirnov test is redefined in such a way that it becomes a function of a parameter called delta. Monte Carlo simulations are conducted for small sample sizes (n≤25) in order to determine those values of delta that lead to improvements in power. A goodness-of-fit test procedure is proposed as a replacement to the classical Kolmogorov-Smirnov test. Simulation results indicate that the size of the test is not affected by delta, and that the proposed test procedure has power that is at least as high as the classical Kolmogorov-Smirnov test, and in many instances the power improvement is very substantial. © 1990.
引用
收藏
页码:317 / 335
页数:19
相关论文
共 30 条
[1]  
Benard A, 1953, STAT NEERL, V7, P163, DOI DOI 10.1111/J.1467-9574.1953.TB00821.X
[2]  
Blom G., 1958, STAT ESTIMATES TRANS
[3]   RANGE OF DIFFERENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKES MODIFIED EMPIRICAL DISTRIBUTION FUNCTION [J].
BRUNK, HD .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02) :525-&
[4]  
D'Agostino R., 1986, GOODNESS FIT TECHNIQ
[5]  
DURBIN J, 1969, BIOMETRIKA, V56, P1
[6]  
GIBBONS JD, 1985, NONPARAMETRIC STATIS
[7]  
GREEN JR, 1976, J AM STAT ASSOC, V71, P204
[8]  
Gumbel EJ, 1939, CR HEBD ACAD SCI, V209, P645
[9]  
Gumbel EJ, 1942, BIOMETRIKA, V32, P317
[10]   MODIFIED KOLMOGOROV-SMIRNOV TESTS OF GOODNESS OF FIT [J].
HARTER, HL ;
KHAMIS, HJ ;
LAMB, RE .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1984, 13 (03) :293-323