INTEGRABLE SPIN-1/2 XXZ HEISENBERG CHAIN WITH COMPETING INTERACTIONS

被引:55
作者
FRAHM, H
机构
[1] Inst. fur Theor. Phys., Hannover Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 06期
关键词
D O I
10.1088/0305-4470/25/6/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical behaviour of an integrable model of a spin-1/2 chain with nearest-neighbour XXZ interaction and a competing three-spin interaction involving nearest and next-nearest neighbours is studied. The phase diagram at zero temperature is obtained. Methods from conformal field theory are used to compute the asymptotics of the spin-spin correlation functions.
引用
收藏
页码:1417 / 1427
页数:11
相关论文
共 25 条
[1]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   CONFORMAL-INVARIANCE, THE CENTRAL CHARGE, AND UNIVERSAL FINITE-SIZE AMPLITUDES AT CRITICALITY [J].
BLOTE, HWJ ;
CARDY, JL ;
NIGHTINGALE, MP .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :742-745
[4]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204
[5]   METHOD FOR CALCULATING FINITE SIZE CORRECTIONS IN BETHE ANSATZ SYSTEMS - HEISENBERG CHAIN AND 6-VERTEX MODEL [J].
DEVEGA, HJ ;
WOYNAROVICH, F .
NUCLEAR PHYSICS B, 1985, 251 (03) :439-456
[6]  
FADDEEV LD, 1980, SOV SCI REV C, V1, P107
[7]   CORRELATION-FUNCTIONS OF THE ONE-DIMENSIONAL HUBBARD-MODEL IN A MAGNETIC-FIELD [J].
FRAHM, H ;
KOREPIN, VE .
PHYSICAL REVIEW B, 1991, 43 (07) :5653-5662
[8]   FINITE-SIZE EFFECTS IN THE INTEGRABLE XXZ HEISENBERG-MODEL WITH ARBITRARY SPIN [J].
FRAHM, H ;
YU, NC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11) :2115-2132
[9]  
FRAHM H, 1990, PHYS REV B, V42, P10533
[10]   THERMODYNAMICS OF HEISENBERG-ISING RING FOR DELTA-NOT-GREATER-THAN-1 [J].
GAUDIN, M .
PHYSICAL REVIEW LETTERS, 1971, 26 (21) :1301-+