A PROOF OF THE BOUNDED GRAPH CONJECTURE

被引:14
作者
DIESTEL, R [1 ]
LEADER, I [1 ]
机构
[1] DEPT PURE MATH,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1007/BF02100602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An infinite graph is called bounded if for every labelling of its vertices with natural numbers there exists a sequence of natural numbers which eventually exceeds the labelling along any ray in the graph. We prove an old conjecture of Halin, which characterizes the bounded graphs in terms of four forbidden topological subgraphs.
引用
收藏
页码:131 / 162
页数:32
相关论文
共 9 条
  • [1] DIESTEL R, IN PRESS J COMB TH B
  • [2] Diestel Reinhard, 1990, GRAPH DECOMPOSITIONS
  • [3] Halin R., 1978, ANN DISCRETE MATH, V3
  • [4] HALIN R, 1989, ANN DISCRETE MATH, V41
  • [5] HALIN R, 1991, DISCRETE MATH, V95
  • [6] ROOT TREES AND INFINITE DISTANCES IN GRAPHS
    JUNG, HA
    [J]. MATHEMATISCHE NACHRICHTEN, 1969, 41 (1-3) : 1 - &
  • [7] KONIG D, 1936, THEORIE ENDLICHEN UN
  • [8] PROMEL HJ, UNPUB ASPECTS RAMSEY
  • [9] Rado R., 1964, ACTA ARITH, V9, P331