RECURSIVE SOFT MORPHOLOGICAL FILTERS

被引:16
作者
SHIH, FY
PUTTAGUNTA, P
机构
[1] Computer Vision Laboratory, Department of Computer and Information Science, New Jersey Institute of Technology, Newark
关键词
D O I
10.1109/83.392345
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this correspondence, we present properties of recursive soft morphological filters that use previously filtered outputs as their inputs, cascade combinations of these filters, and the idempotent recursive soft morphological filters. The development allows problems in the implementation of cascaded recursive soft morphological filters to be reduced to the equivalent problems of a single recursive standard morphological filter.
引用
收藏
页码:1027 / 1032
页数:6
相关论文
共 18 条
  • [1] Crimmins T.R., Brown W.M., Image algebra and automatic shape recognition, IEEE Trans. Aerosp. Electron. Syst., AES-21, pp. 60-69, (1985)
  • [2] David H., Order Statistics, (1981)
  • [3] Dougherty E., Haralick R., The logical context of nonlinear filtering, Proc. SPIE Symp. Image Algebra Morphological Image Processing, 1658, pp. 234-244, (1992)
  • [4] Giardina C.R., Dougherty E.R., Morphological Methods in Image and Signal Processing, (1988)
  • [5] Haralick R.M., Shapiro L.G., Computer and Robot Vision, 1, pp. 26-157, (1992)
  • [6] Koskinen L., Astola J., Neuvo Y., Soft morphological filters, Proc. SPIE Symp. Image Algebra Morphological Image Processing, 1568, pp. 262-270, (1991)
  • [7] Koskinen L., Astola J., filters, Proc. SPIE Symp. Nonlinear Image Processing, 1658, pp. 25-36, (1992)
  • [8] Maragos P., Schafer R., Morphological filters—Part II: Their relations to median, order-statistics, and stack filters, IEEE Trans. Acoust., ASSP-35, pp. 1170-1184, (1987)
  • [9] Maragos P., Ziff R., Threshold superposition in morphological image analysis systems, IEEE Trans. Pattern Anal. Machine Intell., 12, 5, pp. 498-504, (1990)
  • [10] Serra J., Image Analysis and Mathematical Morphology, (1982)