A COMPUTATIONALLY EFFICIENT VELOCITY-SPACE TRANSPORT MODEL FOR DEVICE SIMULATION

被引:0
|
作者
DUNN, DE [1 ]
机构
[1] N DAKOTA STATE UNIV,FARGO,ND 58105
关键词
D O I
10.1108/eb051802
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An improved velocity-space carrier transport model is presented, based on a direct solution of the Boltzmann Transport Equation. This model attempts to achieve the computational efficiency required for device simulation, while still solving for the distribution function itself. This preserves critical fine structure effects due a non-ideal band structure and forward scattering mechanisms. The model includes a numerically efficient representation of three dimensional k-space formulated around a 1D velocity-space variable, and the particle energy. The number of empirical parameters in the model is reduced to a single constant per scattering mechanism. A physically intuitive solution algorithm is developed which repeatedly shifts and shapes the estimate of the distribution until convergence. Results are presented for the steady-state homogeneous case in silicon and GaAs, which are of comparable computational cost as drift-diffusion simulations.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 50 条
  • [31] VELOCITY-SPACE ANISOTROPY IN SPHERICALLY EXPANDING COLLISIONLESS PLASMAS
    TRUE, MA
    ALBRITTON, JR
    WILLIAMS, EA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 1029 - 1029
  • [32] Computationally efficient ferroelectric capacitor model for circuit simulation
    Jiang, B
    Zurcher, P
    Jones, RE
    Gillespie, SJ
    Lee, JC
    1997 SYMPOSIUM ON VLSI TECHNOLOGY: DIGEST OF TECHNICAL PAPERS, 1997, : 141 - 142
  • [33] Velocity-space tomography using prior information at MAST
    Madsen, B.
    Salewski, M.
    Huang, J.
    Jacobsen, A. S.
    Jones, O.
    McClements, K. G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10):
  • [34] Computationally Efficient Multiple-Independent-Gate Device Model
    Antidormi, Aleandro
    Frache, Stefano
    Graziano, Mariagrazia
    Gaillardon, Pierre-Emmanuel
    Piccinini, Gianluca
    De Micheli, Giovanni
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (01) : 2 - 14
  • [35] VELOCITY-SPACE INSTABILITIES IN AURORAL F-REGION IONOSPHERE
    FARLEY, DT
    OTT, E
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 978 - 978
  • [36] Velocity-space analysis method for hazardous fragments in debris clouds
    He, Qi-Guang
    Chen, Jin-Fu
    Chen, Xiaowei
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2022, 161
  • [37] Fusion yield of plasma with velocity-space anisotropy at constant energy
    Kolmes, E. J.
    Mlodik, M. E.
    Fisch, N. J.
    PHYSICS OF PLASMAS, 2021, 28 (05)
  • [38] BRVO: Predicting pedestrian trajectories using velocity-space reasoning
    Kim, Sujeong
    Guy, Stephen J.
    Liu, Wenxi
    Wilkie, David
    Lau, Rynson W. H.
    Lin, Ming C.
    Manocha, Dinesh
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (02): : 201 - 217
  • [39] Velocity-space sensitivity and inversions of synthetic ion cyclotron emission
    Schmidt, B. S.
    Salewski, M.
    Reman, B. C. G.
    Dendy, R. O.
    Dong, Y.
    Jarleblad, H.
    Moseev, D.
    Ochoukov, R.
    Rud, M.
    Valentini, A.
    PHYSICS OF PLASMAS, 2023, 30 (09)
  • [40] VELOCITY-SPACE DISTRIBUTIONS OF WAVE-ACCELERATED AURORAL ELECTRONS
    BRYANT, DA
    PERRY, CH
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1995, 100 (A12) : 23711 - 23725