ON BERNOULLI BOUNDARY VALUE PROBLEM

被引:0
作者
Costabile, Francesco A. [1 ]
Serpe, Annarosa [1 ]
机构
[1] Univ Calabria, Dept Math, Via P Bucci Cubo 30-A, I-87036 Arcavacata Di Rende, CS, Italy
来源
MATEMATICHE | 2007年 / 62卷 / 02期
关键词
Bernoulli; Green function; Picard's iteration; Newton iteration;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the boundary value problem: {x((m))(t) = f (t, (x) over bar( t)), a <= t <= b, m > 1 x(a) = beta(0) Delta x((k)) equivalent to x((k))( b)-x((k))(a) = beta(k+1), k = 0,..., m-2 where (x) over bar (t) = (x(t), x'(t),...., x((m-1))(t)), beta(i) is an element of R, i = 0,..., m-1, and f is continuous at least in the interior of the domain of interest. We give a constructive proof of the existence and uniqueness of the solution, under certain conditions, by Picard's iteration. Moreover Newton's iteration method is considered for the numerical computation of the solution.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 8 条