THE GILLIS-DOMB-FISHER CORRELATED RANDOM-WALK

被引:17
作者
CHEN, A [1 ]
RENSHAW, E [1 ]
机构
[1] UNIV STRATHCLYDE,DEPT STAT & MODELLING SCI,GLASGOW G1 1XH,SCOTLAND
关键词
GILLIS WALK; GILLIS-DOMB-FISHER WALK; N-STEP DISTRIBUTION; CHARACTERISTIC FUNCTION; MOMENTS; RECURRENCE;
D O I
10.2307/3214713
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Correlated random walk models figure prominently in many scientific disciplines. Of fundamental importance in such applications is the development of the characteristic function of the n-step probability distribution since it contains complete information on the probability structure of the process. Using a simple algebraic lemma we derive the n-step characteristic function of the Gillis correlated random walk together with other related results. In particular, we present a new and simple proof of Gillis's conjecture, consider the generalization to the Gillis-Domb-Fisher walk, and examine the effect of including an arbitrary initial distribution.
引用
收藏
页码:792 / 813
页数:22
相关论文
共 21 条
[1]  
[Anonymous], 1973, MATH THEORY DYNAMICS
[2]  
[Anonymous], 1921, MATH ANN, DOI [DOI 10.1007/BF01458701, 10.1007/BF01458701]
[3]  
[Anonymous], 1964, PRINCIPLES RANDOM WA, DOI DOI 10.1007/978-1-4757-4229-9
[4]  
Barber M., 1970, RANDOM RESTRICTED WA
[5]  
Domb C., 1958, P CAMBRIDGE PHILOS S, V54, P48
[6]  
Flory P. J., 1962, PRINCIPLES POLYM CHE
[7]  
Gillis J., 1955, MATH PROC CAMBRIDGE, V51, P639
[8]   MORPHOLOGY OF THE STRUCTURAL ROOT-SYSTEM OF SITKA SPRUCE .1. ANALYSIS AND QUANTITATIVE DESCRIPTION [J].
HENDERSON, R ;
FORD, ED ;
RENSHAW, E ;
DEANS, JD .
FORESTRY, 1983, 56 (02) :121-135
[9]   MORPHOLOGY OF THE STRUCTURAL ROOT-SYSTEM OF SITKA SPRUCE .2. COMPUTER-SIMULATION OF ROOTING PATTERNS [J].
HENDERSON, R ;
FORD, ED ;
RENSHAW, E .
FORESTRY, 1983, 56 (02) :137-153
[10]   A CORRELATED RANDOM-WALK MODEL FOR TWO-DIMENSIONAL DIFFUSION [J].
HENDERSON, R ;
RENSHAW, E ;
FORD, D .
JOURNAL OF APPLIED PROBABILITY, 1984, 21 (02) :233-246