HAMILTONIAN PATHS AND HAMILTONIAN CONNECTIVITY IN GRAPHS

被引:12
作者
WEI, B
机构
[1] Technische Universität Berlin, Fachbereich Mathematik, 1000 Berlin 12
关键词
D O I
10.1016/0012-365X(93)90555-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a 2-connected graph with n vertices such that d(u)+d(v)+d(w)-\N(u) and N(v)and N(w)\ greater-than-or-equal-to n+1 holds for any triple of independent vertices u, v and w. Then for any distinct vertices u and v such that {u, v} is not a cut vertex set of G, there is a hamiltonian path between u and v. In particular, if G is 3-connected, then G is hamiltonian-connected. This is closely related to the main result in Flandrin et al. (1991) and generalizes a theorem of Ore (1963) and a theorem of Faudree et al. (1989).
引用
收藏
页码:223 / 228
页数:6
相关论文
共 3 条
[1]   NEIGHBORHOOD UNIONS AND HAMILTONIAN PROPERTIES IN GRAPHS [J].
FAUDREE, RJ ;
GOULD, RJ ;
JACOBSON, MS ;
SCHELP, RH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (01) :1-9
[2]   HAMILTONISM, DEGREE SUM AND NEIGHBORHOOD INTERSECTIONS [J].
FLANDRIN, E ;
JUNG, HA ;
LI, H .
DISCRETE MATHEMATICS, 1991, 90 (01) :41-52
[3]  
Ore O., 1963, J MATH PURE APPL, V42, P21