THE PRANDTL NUMBER EFFECT NEAR THE ONSET OF BENARD CONVECTION IN A POROUS-MEDIUM

被引:12
作者
LAGE, JL
BEJAN, A
GEORGIADIS, JG
机构
[1] DUKE UNIV,DEPT MECH ENGN & MAT SCI,BOX 90300,DURHAM,NC 27708
[2] SO METHODIST UNIV,DEPT MECH ENGN,DALLAS,TX 75275
基金
美国国家科学基金会;
关键词
POROUS MEDIA; BENARD CONVECTION; PRANDTL NUMBER EFFECT;
D O I
10.1016/0142-727X(92)90011-W
中图分类号
O414.1 [热力学];
学科分类号
摘要
This note focuses on Kladias and Prasad's claim that the critical Rayleigh number for the onset of Benard convection in an infinite horizontal Porous layer increases as the Prandtl number decreases, and argues that the critical Rayleigh number (Ra(c)) depends only on the Darcy number (Da), as linear stability analysis indicates. The two-dimensional steady-convection problem is then solved numerically to document the convection heat transfer effect of the Rayleigh number, Darcy number, Prandtl number, and porosity. The note concludes with an empirical correlation for the overall Nusselt number, which shows the eff ect of Prandtl number at above-critical Rayleigh numbers. The correlation is consistent with the corresponding correlation known for Benard convection in a pure fluid.
引用
收藏
页码:408 / 411
页数:4
相关论文
共 50 条
  • [1] ON THE EFFECT OF THE PRANDTL NUMBER ON THE ONSET OF BENARD CONVECTION
    LAGE, JL
    BEJAN, A
    GEORGIADIS, J
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1991, 12 (02) : 184 - 188
  • [2] Comment on the effect of anisotropy on the onset of convection in a porous medium
    Nield, D. A.
    ADVANCES IN WATER RESOURCES, 2007, 30 (03) : 696 - 697
  • [3] ONSET OF NATURAL-CONVECTION IN A HORIZONTAL POROUS-MEDIUM WITH MIXED THERMAL-BOUNDARY CONDITIONS
    WILKES, KE
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1995, 117 (02): : 543 - 547
  • [4] Transition to Chaos in Five-Dimensional Porous-Medium Thermal-Hydrodynamic Model with Low Prandtl Number
    Beljadid, Abdelaziz
    Joundy, Youssef
    Rouah, Hamza
    Taik, Ahmed
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (02):
  • [5] The Onset of Prandtl–Darcy–Prats Convection in a Horizontal Porous Layer
    Emily Dodgson
    D. Andrew S. Rees
    Transport in Porous Media, 2013, 99 : 175 - 189
  • [6] Effects of Prandtl number in quasi-two-dimensional Rayleigh-Benard convection
    Li, Xiao-Ming
    He, Ji-Dong
    Tian, Ye
    Hao, Peng
    Huang, Shi-Di
    JOURNAL OF FLUID MECHANICS, 2021, 915
  • [7] Dynamo action in rapidly rotating Rayleigh-Benard convection at infinite Prandtl number
    Cattaneo, Fausto
    Hughes, David W.
    JOURNAL OF FLUID MECHANICS, 2017, 825 : 385 - 411
  • [8] NONSIMILAR SOLUTIONS FOR MIXED CONVECTION ON A WEDGE EMBEDDED IN A POROUS-MEDIUM
    VARGAS, JVC
    LAURSEN, TA
    BEJAN, A
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1995, 16 (03) : 211 - 216
  • [9] Prandtl number effect on heat transfer and flow structures in Rayleigh-Benard convection modulated by an oscillatory bottom plate
    Liu, Zheheng
    Jia, Pan
    Zhong, Zheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 236
  • [10] Thermal boundary layer dynamics in low-Prandtl-number Rayleigh-Benard convection
    Kim, Nayoung
    Schindler, Felix
    Vogt, Tobias
    Eckert, Sven
    JOURNAL OF FLUID MECHANICS, 2024, 994