NEW APPROXIMATE RENORMALIZATION METHOD ON FRACTALS

被引:14
作者
HATTORI, K
HATTORI, T
WATANABE, H
机构
[1] GAKUSHUIN UNIV, FAC SCI, DEPT PHYS, TOSHIMA KU, TOKYO 171, JAPAN
[2] TOKYO METROPOLITAN UNIV, FAC SCI, DEPT MATH, SETAGAYA KU, TOKYO 158, JAPAN
关键词
D O I
10.1103/PhysRevA.32.3730
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:3730 / 3733
页数:4
相关论文
共 16 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]   AC RESPONSE OF FRACTAL NETWORKS [J].
CLERC, JP ;
TREMBLAY, AMS ;
ALBINET, G ;
MITESCU, CD .
JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (19) :L913-L924
[3]   SOLUTIONS TO THE SCHRODINGER-EQUATION ON SOME FRACTAL LATTICES [J].
DOMANY, E ;
ALEXANDER, S ;
BENSIMON, D ;
KADANOFF, LP .
PHYSICAL REVIEW B, 1983, 28 (06) :3110-3123
[4]   A RIGOROUS APPROACH TO ANDERSON LOCALIZATION [J].
FROHLICH, J ;
SPENCER, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 103 (1-4) :9-25
[5]  
GAWEDZKI K, 1985, PHYS REV LETT, V54, P92, DOI 10.1103/PhysRevLett.54.92
[6]   GEOMETRIC IMPLEMENTATION OF HYPERCUBIC LATTICES WITH NONINTEGER DIMENSIONALITY BY USE OF LOW LACUNARITY FRACTAL LATTICES [J].
GEFEN, Y ;
MEIR, Y ;
MANDELBROT, BB ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1983, 50 (03) :145-148
[7]  
HARA T, UNPUB
[8]  
Hattori K., UNPUB
[9]   RENORMALIZATION ON SYMMETRIC FRACTALS [J].
HILFER, R ;
BLUMEN, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (14) :L783-L789
[10]   RENORMALIZATION ON SIERPINSKI-TYPE FRACTALS [J].
HILFER, R ;
BLUMEN, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (10) :L537-L545