KRYLOV-SUBSPACE METHODS FOR THE SYLVESTER EQUATION

被引:165
作者
HU, DY [1 ]
REICHEL, L [1 ]
机构
[1] KENT STATE UNIV,DEPT MATH & COMP SCI,KENT,OH 44242
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(92)90031-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe Galerkin and minimal residual algorithms for the solution of Sylvester's equation AX - XB = C. The algorithms use Krylov subspaces for which orthogonal bases are generated by the Arnoldi process. For certain choices of Krylov subspaces the computation of the solution splits into the solution of many independent subproblems. This makes the algorithms suitable for implementation on parallel computers.
引用
收藏
页码:283 / 313
页数:31
相关论文
共 27 条
[1]  
BAI Z, IN PRESS 5TH P SIAM
[2]  
BAI Z, IN PRESS IMA J NUMER
[3]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[4]  
Birkhoff G., 1962, ADV COMPUT, P189, DOI DOI 10.1016/S0065-2458(08)60620-8
[5]   A THEORETICAL COMPARISON OF THE ARNOLDI AND GMRES ALGORITHMS [J].
BROWN, PN .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01) :58-78
[6]  
Datta B. N., 1986, Computational and Combinatorial Methods in Systems Theory, P201
[7]   CONTROLLABILITY, OBSERVABILITY AND THE SOLUTION OF AX-XB=C [J].
DESOUZA, E ;
BHATTACHARYYA, SP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 39 (AUG) :167-188
[8]   ALTERNATING DIRECTION IMPLICIT ITERATION FOR SYSTEMS WITH COMPLEX SPECTRA [J].
ELLNER, NS ;
WACHSPRESS, EL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :859-870
[9]   A HYBRID CHEBYSHEV KRYLOV SUBSPACE ALGORITHM FOR SOLVING NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
ELMAN, HC ;
SAAD, Y ;
SAYLOR, PE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :840-855
[10]  
Ferng W. R., 1991, Numerical Algorithms, V1, P1, DOI 10.1007/BF02145580