Variational Methods of Data Assimilation and Inverse Problems for Studying the Atmosphere, Ocean, and Environment

被引:24
作者
Penenko, V. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Computat Math & Math Geophys, Pr Akad Lavrenteva 6, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
variational principles; data assimilation; adjoint problems; sensitivity analysis; uncertainty assessment; inverse problems; models of atmospheric dynamics and chemistry;
D O I
10.1134/S1995423909040065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Methods for the combined use ofmathematical models and observational data for studying and forecasting the evolution of natural processes in the atmosphere, ocean, and environment are presented. Variational principles for estimation of functionals defined on a set of functions of state, parameters and sources of models of processes are a theoretical background. Mathematical models with allowance for uncertainties are considered as constraints to the class of functions. Attention is focused on methods of successive data assimilation and on inverse problems.
引用
收藏
页码:341 / 351
页数:11
相关论文
共 50 条
[31]   A three-dimensional variational ocean data assimilation system: Scheme and preliminary results [J].
Zhu Jiang ;
Zhou Guangqing ;
Yan Changxiang ;
Fu Weiwei ;
You Xiaobao .
SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2006, 49 (11) :1212-1222
[32]   Variational Data Assimilation in Problems of Modeling Hydrophysical Fields in Open Water Areas [J].
V. I. Agoshkov ;
V. B. Zalesny ;
T. O. Sheloput .
Izvestiya, Atmospheric and Oceanic Physics, 2020, 56 :253-267
[33]   Variational Data Assimilation in Problems of Modeling Hydrophysical Fields in Open Water Areas [J].
Agoshkov, V., I ;
Zalesny, V. B. ;
Sheloput, T. O. .
IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2020, 56 (03) :253-267
[34]   Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics [J].
Gejadze, I. Yu. ;
Copeland, G. J. M. ;
Le Dimet, F. -X. ;
Shutyaev, V. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (22) :7923-7943
[35]   Coupled Atmosphere-Ocean Reconstruction of the Last Millennium Using Online Data Assimilation [J].
Perkins, W. A. ;
Hakim, G. J. .
PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2021, 36 (05)
[36]   Exploring the Potential of Strongly Coupled Lagrangian Data Assimilation in an Ocean-Atmosphere System [J].
Sun, Luyu ;
Apte, Amit ;
Slivinski, Laura ;
Spiller, Elanine T. .
MONTHLY WEATHER REVIEW, 2025, 153 (03) :425-445
[37]   Coupled atmosphere–ocean data assimilation experiments with a low-order climate model [J].
Robert Tardif ;
Gregory J. Hakim ;
Chris Snyder .
Climate Dynamics, 2014, 43 :1631-1643
[38]   Comparison of methods for argo drifters data assimilation into a hydrodynamical model of the ocean [J].
K. P. Belyaev ;
C. A. S. Tanajura ;
N. P. Tuchkova .
Oceanology, 2012, 52 :593-603
[39]   A MULTILEVEL APPROACH FOR COMPUTING THE LIMITED-MEMORY HESSIAN AND ITS INVERSE IN VARIATIONAL DATA ASSIMILATION [J].
Brown, Kirsty L. ;
Gejadze, Igor ;
Ramage, Alison .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :A2934-A2963
[40]   Inverse problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation and heart rate variability [J].
Pant, Sanjay ;
Corsini, Chiara ;
Baker, Catriona ;
Hsia, Tain-Yen ;
Pennati, Giancarlo ;
Vignon-Clementel, Irene E. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2017, 14 (126)